ترغب بنشر مسار تعليمي؟ اضغط هنا

The exchange interaction among electrons is one of the most fundamental quantum mechanical interactions in nature and underlies any magnetic phenomena from ferromagnetic ordering to magnetic storage. The current technology is built upon a thermal or magnetic field, but a frontier is emerging to directly control magnetism using ultrashort laser pulses. However, little is known about the fate of the exchange interaction. Here we report unambiguously that photoexcitation is capable of quenching the exchange interaction in all three $3d$ ferromagnetic metals. The entire process starts with a small number of photoexcited electrons which build up a new and self-destructive potential that collapses the system into a new state with a reduced exchange splitting. The spin moment reduction follows a Bloch-like law as $M_z(Delta E)=M_z(0)(1-{Delta E}/{Delta E_0})^{frac{1}{beta}}$, where $Delta E$ is the absorbed photon energy and $beta$ is a scaling exponent. A good agreement is found between the experimental and our theoretical results. Our findings may have a broader implication for dynamic electron correlation effects in laser-excited iron-based superconductors, iron borate, rare-earth orthoferrites, hematites and rare-earth transition metal alloys.
Superatomic molecular orbitals (SAMO) in C60 are ideal building blocks for functional nanostructures. However, imaging them spatially in the gas phase has been unsuccessful. It is found experimentally that if C60 is excited by an 800-nm laser, the ph otoelectron casts an anisotropic velocity image, but the image becomes isotropic if excited at a 400-nm wavelength. This diffuse image difference has been attributed to electron thermal ionization, but more recent experiments (800 nm) reveal a clear non-diffuse image superimposed on the diffuse image, whose origin remains a mystery. Here we show that the non-diffuse anisotropic image is the precursor of the $f$ SAMO. We predict that four 800-nm photons can directly access the $1f$ SAMO, and with one more photon, can image the orbital, with the photoelectron angular distribution having two maxima at 0$^circ$ and 180$^circ$ and two humps separated by 56.5$^circ$. Since two 400-nm photons only resonantly excite the spherical $1s$ SAMO and four 800-nm photon excite the anisotropic $1f$ SAMO, our finding gives a natural explanation of the non-diffuse image difference, complementing the thermal scenario.
100 - P. Zhang , P. Richard , N. Xu 2014
We used emph{in-situ} potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tu ne the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe$_{2-x}$Se$_2$ compound.
42 - G. P. Zhang , Mingqiang Gu , 2014
Since the beginning of femtomagnetism, it has been hotly debated how an ultrafast laser pulse can demagnetize a sample and switch its spins within a few hundred femtoseconds, but no consensus has been reached. In this paper, we propose that an ultraf ast reduction in the exchange interaction by a femtosecond laser pulse is mainly responsible for demagnetization and spin switching. The key physics is that the dipole selection rule demands two distinctive electron configurations for the ground and excited states and consequently changes the exchange interaction. Although the exchange interaction change is almost instantaneous, its effect on the spin is delayed by the finite spin wave propagation. Consistent with the experimental observation, the delay becomes longer with a stronger exchange interaction pulse. In spin-frustrated systems, the effect of the exchange interaction change is even more dramatic, where the spin can be directly switched from one direction to the other. Therefore, our theory has the potential to explain the essence of major observations in rare-earth transition metal compounds for the last seven years. Our findings are likely to motivate further research in the quest of the origin of femtomagnetism.
91 - P. Zhang , P. Richard , T. Qian 2013
We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak non-magnetic scattering between bands with opposite sign of the superconducting gap phase. This weak scattering, likely due to off-plane Ba/K disorders, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting gap phase changes sign within holelike (and electronlike) bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials.
We demonstrate a client-server quantum key distribution (QKD) scheme, with large resources such as laser and detectors situated at the server-side, which is accessible via telecom-fibre, to a client requiring only an on-chip polarisation rotator, tha t may be integrated into a handheld device. The detrimental effects of unstable fibre birefringence are overcome by employing the reference frame independent QKD protocol for polarisation qubits in polarisation maintaining fibre, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fibre tethering.
92 - P. Zhang , P. Richard , T. Qian 2011
In order to improve the advantages and the reliability of the second derivative method in tracking the position of extrema from experimental curves, we develop a novel analysis method based on the mathematical concept of curvature. We derive the form ulas for the curvature in one and two dimensions and demonstrate their applicability to simulated and experimental angle-resolved photoemission spectroscopy data. As compared to the second derivative, our new method improves the localization of the extrema and reduces the peak broadness for a better visualization on intensity image plots.
108 - Z. F. Xu , P. Zhang , R. Lu 2010
We propose a pump scheme for quantum circulations, including counter-circulations for superposition states, of a spinor Bose-Einstein condensate. Our scheme is efficient and can be implemented within current experimental technologies and setups. It r emains valid for non-classical atomic states, such as pseudo-spin squeezed states and maximal entangled N-GHZ or NooN states. Moreover, it is capable of transforming several enhanced sensing protocols relying on reduced fluctuations from quantum correlation and entanglement of atomic internal states to enhanced measurement of spatial interference and rotation.
We consider models of heavy fermions in the strong coupling or local moment limit and include phonon degrees of freedom on the conduction electrons. Due to the large mass or low coherence temperature of the heavy fermion state, it is shown that such a regime is dominated by vertex corrections which leads to the complete failure of the Migdal theorem. Even at weak electron-phonon couplings, binding of the conduction electrons competes with the Kondo effect and substantially reduces the coherence temperature, ultimately leading to the Kondo breakdown. Those results are obtained using a combination of the slave boson method and Migdal-Eliashberg approximation as well as the dynamical mean-field theory approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا