ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging superatomic molecular orbitals in a ${bf C_{60}}$ molecule through four 800-nm photons

130   0   0.0 ( 0 )
 نشر من قبل G. P. Zhang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superatomic molecular orbitals (SAMO) in C60 are ideal building blocks for functional nanostructures. However, imaging them spatially in the gas phase has been unsuccessful. It is found experimentally that if C60 is excited by an 800-nm laser, the photoelectron casts an anisotropic velocity image, but the image becomes isotropic if excited at a 400-nm wavelength. This diffuse image difference has been attributed to electron thermal ionization, but more recent experiments (800 nm) reveal a clear non-diffuse image superimposed on the diffuse image, whose origin remains a mystery. Here we show that the non-diffuse anisotropic image is the precursor of the $f$ SAMO. We predict that four 800-nm photons can directly access the $1f$ SAMO, and with one more photon, can image the orbital, with the photoelectron angular distribution having two maxima at 0$^circ$ and 180$^circ$ and two humps separated by 56.5$^circ$. Since two 400-nm photons only resonantly excite the spherical $1s$ SAMO and four 800-nm photon excite the anisotropic $1f$ SAMO, our finding gives a natural explanation of the non-diffuse image difference, complementing the thermal scenario.

قيم البحث

اقرأ أيضاً

77 - G. P. Zhang , Y. H. Bai 2020
High harmonic generation (HHG) has unleashed the power of strong laser physics in solids. Here we investigate HHG from a large system, solid C$_{60}$, with 240 valence electrons engaging harmonic generation at each crystal momentum, the first of this kind. We employ the density functional theory and the time-dependent Liouville equation of the density matrix to compute HHG signals. We find that under a moderately strong laser pulse, HHG signals reach 15th order, consistent with the experimental results from C$_{60}$ plasma. The helicity dependence in solid C$_{60}$ is weak, due to the high symmetry. In contrast to the general belief, HHG is unsuitable for band structure mapping in C$_{60}$. However, we find a window of opportunity using a long wavelength, where harmonics are generated through multiple-photon excitation. In particular, the 5th order harmonic energies closely follow the transition energy dispersion between the valence and conduction bands. This finding is expected to motivate future experimental investigations.
We report a group of unusually big molecular orbitals in the C60/pentacene complex. Our first-principles density functional calculation shows that these orbitals are very delocalized and cover both C60 and pentacene, which we call superintermolecular orbitals or SIMOs. Their spatial extension can reach 1 nm or larger. Optically, SIMOs are dark. Different from ordinary unoccupied molecular orbitals, SIMOs have a very weak Coulomb and exchange interaction. Their energy levels are very similar to the native superatomic molecular orbitals in C60, and can be approximately characterized by orbital angular momentum quantum numbers. They have a distinctive spatial preference. These features fit the key characters of charge-generation states that channel initially-bound electrons and holes into free charge carriers. Thus, our finding is important for C60/pentacene photovoltaics.
251 - M. Waitz , R.Y. Bello , D. Metz 2018
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is dec isive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
The interaction of strong laser fields with matter intrinsically provides powerful tools to image transient dynamics with an extremely high spatiotemporal resolution. Here, we study strong-field ionisation of laser-aligned molecules and show a full r eal-time picture of the photoelectron dynamics in the combined action of the laser field and the molecular interaction. We demonstrate that the molecule has a dramatic impact on the overall strong-field dynamics: it sets the clock for the emission of electrons with a given rescattering kinetic energy. This result represents a benchmark for the seminal statements of molecular-frame strong-field physics and has strong impact on the interpretation of self-diffraction experiments. Furthermore, the resulting encoding of the time-energy relation in molecular-frame photoelectron momentum distributions shows the way of probing the molecular potential in real-time and accessing a deeper understanding of electron transport during strong-field interactions.
231 - K. Kokko , A. Nagy , J. Huhtala 2020
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead o f the total density, used in the traditional DFT. The effective potential together the external potential, nuclear Coulomb potential, can be substituted in the Schrodinger like differential equation to obtain the spherically averaged electron density of the system. In the new method instead of one three-dimensional low symmetry equation one has to solve as many spherically symmetric equations as there are atoms in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا