ترغب بنشر مسار تعليمي؟ اضغط هنا

PSR J0205+6449 is a young ({approx} 5400 years), Crab-like pulsar detected in radio and at X and {gamma}-ray energies and has the third largest spin-down flux among known rotation powered pulsars. It also powers a bright synchrotron nebula detected i n the optical and X-rays. At a distance of {approx} 3.2 kpc and with an extinction comparable to the Crab, PSR J0205+6449 is an obvious target for optical observations. We observed PSR J0205+6449 with several optical facilities, including 8m class ground-based telescopes, such as the Gemini and the Gran Telescopio Canarias. We detected a point source, at a significance of 5.5{sigma}, of magnitude i {approx} 25.5, at the centre of the optical synchrotron nebula, coincident with the very accurate Chandra and radio positions of the pulsar. Thus, we discovered a candidate optical counterpart to PSR J0205+6449. The pulsar candidate counterpart is also detected in the g ({approx}27.4) band and weakly in the r ({approx}26.2) band. Its optical spectrum is fit by a power law with photon index {Gamma}0 = 1.9{pm}0.5, proving that the optical emission if of non-thermal origin, is as expected for a young pulsar. The optical photon index is similar to the X-ray one ({Gamma}X = 1.77{pm}0.03), although the optical fluxes are below the extrapolation of the X-ray power spectrum. This would indicate the presence of a double spectral break between the X-ray and optical energy range, at variance with what is observed for the Crab and Vela pulsars, but similar to the Large Magellanic Cloud pulsar PSR B0540-69.
We revisit the earlier determination of alpha_s(M_Z) via perturbative analyses of short-distance-sensitive lattice observables, incorporating new lattice data and performing a modified version of the original analysis. We focus on two high-intrinsic- scale observables, log(W_11) and log(W_12), and one lower-intrinsic scale observable, log(W_{12}/u_0^6), finding improved consistency among the values extracted using the different observables and a final result, alpha_s(M_Z)=0.1192(11), 2 sigma higher than the earlier result, in excellent agreement with recent non-lattice determinations and, in addition, in good agreement with the results of a similar, but not identical, re-analysis by the HPQCD Collaboration. A discussion of the relation between the two re-analyses is given, focussing on the complementary aspects of the two approaches.
A detailed comparison is made between the topological structure of quenched QCD as revealed by the recently proposed over-improved stout-link smearing in conjunction with an improved gluonic definition of the topological density on one hand and a sim ilar analysis made possible by the overlap-fermionic topological charge density both with and without variable ultraviolet cutoff $lambda_{cut}$. The matching is twofold, provided by fitting the density-density two-point functions on one hand and by a point-by-point fitting of the topological densities according to the two methods. We point out the similar cluster structure of the topological density for moderate smearing and $200 mathrm{MeV} < lambda_{cut} < 600 mathrm{MeV}$, respectively. We demonstrate the relation of the gluonic topological density for extensive smearing to the location of the overlap zero modes and the lowest overlap non-zero mode as found for the unsmeared configurations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا