ﻻ يوجد ملخص باللغة العربية
A detailed comparison is made between the topological structure of quenched QCD as revealed by the recently proposed over-improved stout-link smearing in conjunction with an improved gluonic definition of the topological density on one hand and a similar analysis made possible by the overlap-fermionic topological charge density both with and without variable ultraviolet cutoff $lambda_{cut}$. The matching is twofold, provided by fitting the density-density two-point functions on one hand and by a point-by-point fitting of the topological densities according to the two methods. We point out the similar cluster structure of the topological density for moderate smearing and $200 mathrm{MeV} < lambda_{cut} < 600 mathrm{MeV}$, respectively. We demonstrate the relation of the gluonic topological density for extensive smearing to the location of the overlap zero modes and the lowest overlap non-zero mode as found for the unsmeared configurations.
Overlap fermions preserve a remnant of chiral symmetry on the lattice. They are a powerful tool to investigate the topological structure of the vacuum of Yang-Mills theory and full QCD. Recent results concerning the localization of topological charge
Overlap fermions have an exact chiral symmetry on the lattice and are thus an appropriate tool for investigating the chiral and topological structure of the QCD vacuum. We study various chiral and topological aspects of quenched gauge field configura
We summarize different uses of the eigenmodes of the Neuberger overlap operator for the analysis of the QCD vacuum, here applied to quenched configurations simulated by means of the Luescher-Weisz action. We describe the localization and chiral prope
The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12^3x24, 16^3x32 and 24^3x48 lattices at lattice spacings a = 0.1 - 0.125 fm.
Overlap fermions implement exact chiral symmetry on the lattice and are thus an appropriate tool for investigating the chiral and topological structure of the QCD vacuum. We study various chiral and topological aspects on Luescher-Weisz-type quenched