ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - P. Gratier , J. Pety , P. Boisse 2014
Some runaway stars are known to display IR arc-like structures around them, resulting from their interaction with surrounding interstellar material. The properties of these features as well as the processes involved in their formation are still poorl y understood. We aim at understanding the physical mechanisms that shapes the dust arc observed near the runaway O star AEAur (HD34078). We obtained and analyzed a high spatial resolution map of the CO(1-0) emission that is centered on HD34078, and that combines data from both the IRAM interferometer and 30m single-dish antenna. The line of sight towards HD34078 intersects the outer part of one of the detected globulettes, which accounts for both the properties of diffuse UV light observed in the field and the numerous molecular absorption lines detected in HD34078s spectra, including those from highly excited H2 . Their modeled distance from the star is compatible with the fact that they lie on the 3D paraboloid which fits the arc detected in the 24 {mu}m Spitzer image. Four other compact CO globulettes are detected in the mapped area. These globulettes have a high density and linewidth, and are strongly pressure-confined or transient. The good spatial correlation between the CO globulettes and the IR arc suggests that they result from the interaction of the radiation and wind emitted by HD 34078 with the ambient gas. However, the details of this interaction remain unclear. A wind mass loss rate significantly larger than the value inferred from UV lines is favored by the large IR arc size, but does not easily explain the low velocity of the CO globulettes. The effect of radiation pressure on dust grains also meets several issues in explaining the observations. Further observational and theoretical work is needed to fully elucidate the processes shaping the gas and dust in bow shocks around runaway O stars. (Abridged)
120 - M. Chabot , K. Beroff , P. Gratier 2013
The aim of this paper is to provide a new set of branching ratios for interstellar and planetary chemical networks based on a semi empirical model. We applied, instead of zero order theory (i.e. only the most exoergic decaying channel is considered), a statistical microcanonical model based on the construction of breakdown curves and using experimental high velocity collision branching ratios for their parametriza- tion. We applied the model to ion-molecule, neutral-neutral, and ion-pair reactions implemented in the few popular databases for astrochemistry such as KIDA, OSU and UMIST. We studied the reactions of carbon and hydrocarbon species with electrons, He+, H+, CH+, CH, C, and C+ leading to intermediate complexes of the type Cn=2,10, Cn=2,4 H, C3 H2, C+n=2,10, Cn=2,4 H+, or C3 H+2 . Comparison of predictions with measurements supports the validity of the model. Huge deviations with respect to database values are often obtained. Effects of the new branching ratios in time dependant chemistry for dark clouds and for photodissociation region chemistry with conditions similar to those found in the Horsehead Nebula are discussed.
62 - Jer^ome Pety 2012
We present the first detection of the l-C3H+ hydrocarbon in the interstellar medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two positions, namely the photo-dissociation region (PDR) and the nearby shielded core, revealed a consistent set of eight unidentified lines toward the PDR position. Six of them are detected with a signal-to-noise ratio from 6 to 19, while the two last ones are tentatively detected. Mostly noise appears at the same frequency toward the dense core, located less than 40 away. We simultaneously fit 1) the rotational and centrifugal distortion constants of a linear rotor, and 2) the Gaussian line shapes located at the eight predicted frequencies. The observed lines can be accurately fitted with a linear rotor model, implying a 1Sigma ground electronic state. The deduced rotational constant value is Be= 11244.9512 +/- 0.0015 MHz, close to that of l-C3H. We thus associate the lines to the l-C3H+ hydrocarbon cation, which enables us to constrain the chemistry of small hydrocarbons. A rotational diagram is then used to infer the excitation temperature and the column density. We finally compare the abundance to the results of the Meudon PDR photochemical model.
This work presents high spectral resolution observations of the CII line at 158 micron, one of the major cooling lines of the interstellar medium, taken with the HIFI heterodyne spectrometer on the Herschel satellite. In BCLMP 691, an HII region far north (3.3 kpc) in the disk of M 33, the CII and CO line profiles show similar velocities within $0.5 kms$, while the HI line velocities are systematically shifted towards lower rotation velocities by $sim 5kms$. Observed at the same $12$ angular resolution, the CII lines are broader than those of CO by about 50% but narrower than the HI lines. The CII line to far-infrared continuum ratio suggests a photoelectric heating efficiency of 1.1%. The data, together with published models indicate a UV field $G_0 sim 100$ in units of the solar neighborhood value, a gas density $n_H sim 1000 cc$, and a gas temperature $Tsim 200$ K. Adopting these values, we estimate the C$^+$ column density to be $N_{C^+} approx 1.3 times 10^{17} cmt$. The CII emission comes predominantly from the warm neutral region between the HII region and the cool molecular cloud behind it. From published abundances, the inferred C$^+$ column corresponds to a hydrogen column density of $N_H sim 2 times 10^{21} cmt$. The CO observations suggest that $N_H = 2 N_{H_2} sim 3.2 times 10^{21} cmt$ and 21cm measurements, also at $12$ resolution, yield $N_HI approx 1.2 times 10^{21} cmt$ within the CII velocity range. Thus, some H$_2$ not detected in CO must be present, in agreement with earlier findings based on the SPIRE 250 -- 500 $mu$m emission.
We present an analysis of the first space-based far-IR-submm observations of M 33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young lo w-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H$_2$ content. In this Letter, we measure the dust emission cross-section $sigma$ using SPIRE and recent CO and HI observations; a variation in $sigma$ is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the HI column, yields a morphology similar to that observed in CO. The H$_2$/HI mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M 33.
83 - P. Gratier 2010
Do molecular clouds collapse to form stars at the same rate in all environments? In large spiral galaxies, the rate of transformation of H2 into stars (hereafter SFE) varies little. However, the SFE in distant objects (z~1) is much higher than in the large spiral disks that dominate the local universe. Some small local group galaxies share at least some of the characteristics of intermediate-redshift objects, such as size or color. Recent work has suggested that the Star Formation Efficiency (SFE, defined as the SFRate per unit H2) in local Dwarf galaxies may be as high as in the distant objects. A fundamental difficulty in these studies is the independent measure of the H2 mass in metal-deficient environments. At 490 kpc, NGC6822 is an excellent choice for this study; it has been mapped in the CO(2-1) line using the multibeam receiver HERA on the 30 meter IRAM telescope, yielding the largest sample of giant molecular clouds (GMCs) in this galaxy. Despite the much lower metallicity, we find no clear difference in the properties of the GMCs in NGC 6822 and those in the Milky Way except lower CO luminosities for a given mass. Several independent methods indicate that the total H2 mass in NGC 6822 is about 5 x 10^6 Msun in the area we mapped and less than 10^7 Msun in the whole galaxy. This corresponds to a NH2/ICO ~ 4 x 10^{21} cm^-2 /(Kkm/s) over large scales, such as would be observed in distant objects, and half that in individual GMCs. No evidence was found for H2 without CO emission. Our simulations of the radiative transfer in clouds are entirely compatible with these NH2/ICO values. The SFE implied is a factor 5 - 10 higher than what is observed in large local universe spirals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا