ترغب بنشر مسار تعليمي؟ اضغط هنا

Cool gas and dust in M33: Results from the Herschel M33 extended survey (HERM33ES)

128   0   0.0 ( 0 )
 نشر من قبل Jonathan Braine
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the first space-based far-IR-submm observations of M 33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H$_2$ content. In this Letter, we measure the dust emission cross-section $sigma$ using SPIRE and recent CO and HI observations; a variation in $sigma$ is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the HI column, yields a morphology similar to that observed in CO. The H$_2$/HI mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M 33.



قيم البحث

اقرأ أيضاً

Within the framework of the HERM33ES key project, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. We use PACS and SPIRE maps at 100, 160, 25 0, 350, and 500 micron wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 and 500 micron using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 micron). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60K plus/minus 10K. The temperature of the cold component drops significantly from about 24K in the inner 2 kpc radius to 13K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta=1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
We study the far-infrared emission from the nearby spiral galaxy M33 in order to investigate the dust physical properties such as the temperature and the luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 1 60, 250, 350 and 500 micron) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 micron and Spitzer-MIPS 24 and 70 micron data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the cool dust grains are heated at temperatures between 11 and 28 K with the lowest temperatures found in the outskirts of the galaxy and the highest ones in the center and in the bright HII regions. The infrared/submillimeter total luminosity (5 - 1000 micron) is estimated to be 1.9x10^9 Lsun. 59% of the total luminosity of the galaxy is produced by the cool dust grains (~15 K) while the rest 41% is produced by warm dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly enhanced in the center of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms) we find that the fraction of the emission in the disk in the mid-infrared (24 micron) is 21%, while it gradually rises up to 57% in the submillimeter (500 micron). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The cool dust inside the disk is heated at a narrow range of temperatures between 18 and 15 K (going from the center to the outer parts of the galaxy).
113 - F. Combes 2012
Power spectra of de-projected images of late-type galaxies in gas and/or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as t wo power-laws, a shallow one at large scales (larger than 500 pc) and a steeper one at small scales, with the break between the two corresponding to the line-of-sight thickness of the galaxy disk. We present a thorough analysis of the power spectra of the dust and gas emission at several wavelengths in the nearby galaxy M33. In particular, we use the recently obtained images at five wavelengths by PACS and SPIRE onboard Herschel. The large dynamical range (2-3 dex in scale) of most images allow us to determine clearly the change in slopes from -1.5 to -4, with some variations with wavelength. The break scale is increasing with wavelength, from 100 pc at 24 and 100micron to 350 pc at 500micron, suggesting that the cool dust lies in a thicker disk than the warm dust, may be due to star formation more confined to the plane. The slope at small scale tends to be steeper at longer wavelength, meaning that the warmer dust is more concentrated in clumps. Numerical simulations of an isolated late-type galaxy, rich in gas and with no bulge, like M33, are carried out, in order to better interpret these observed results. Varying the star formation and feedback parameters, it is possible to obtain a range of power-spectra, with two power-law slopes and breaks, which nicely bracket the data. The small-scale power-law is indeed reflecting the 3D behaviour of the gas layer, steepening strongly while the feedback smoothes the structures, by increasing the gas turbulence. M33 appears to correspond to a fiducial model with an SFR of $sim$ 0.7 Mo/yr, with 10% supernovae energy coupled to the gas kinematics.
184 - C. Kramer , M. Boquien , J. Braine 2011
Within the key project Herschel M33 extended survey (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual s tar formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6um to 500um, along with HI, Halpha, and GALEX UV data, we have studied the dust at high spatial resolutions of 150pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [CII], [OI], and CO maps obtained in a first spectroscopic study of one 2x2 subregion of M33, located on the inner, northern spiral arm and encompassing the HII region BCLMP302.
Context: The emission line of [CII] at 158 micron is one of the strongest cooling lines of the interstellar medium (ISM) in galaxies. Aims: Disentangling the relative contributions of the different ISM phases to [CII] emission, is a major topic of th e HerM33es program, a Herschel key project to study the ISM in the nearby spiral galaxy M33. Methods: Using PACS, we have mapped the emission of [CII] 158 micron, [OI] 63 micron, and other FIR lines in a 2x2 region of the northern spiral arm of M33, centered on the HII region BCLMP302. At the peak of H-alpha emission, we have observed in addition a velocity resolved [CII] spectrum using HIFI. We use scatterplots to compare these data with PACS 160 micron continuum maps, and with maps of CO and HI data, at a common resolution of 12 arcsec or 50 pc. Maps of H-alpha and 24 micron emission observed with Spitzer are used to estimate the SFR. We have created maps of the [CII] and [OI] 63 micron emission and detected [NII] 122 micron and NIII 57 micron at individual positions. Results: The [CII] line observed with HIFI is significantly broader than that of CO, and slightly blue-shifted. In addition, there is little spatial correlation between [CII] observed with PACS and CO over the mapped region. There is even less spatial correlation between [CII] and the atomic gas traced by HI. Detailed comparison of the observed intensities towards the HII region with models of photo ionization and photon dominated regions, confirms that a significant fraction, 20--30%, of the observed [CII] emission stems from the ionized gas and not from the molecular cloud. The gas heating efficiency, using the ratio between [CII] and the TIR as a proxy, varies between 0.07 and 1.5%, with the largest variations found outside the HII region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا