ترغب بنشر مسار تعليمي؟ اضغط هنا

The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locat ions. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the `pearls on a string and `popcorn paradigms. In this paper, we use new Herschel PACS observations, obtained as part of the KINGFISH Open Time Key Program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC4736. By comparing spatially resolved estimates of the stellar FUV flux available for heating, with the gas and dust cooling derived from the FIR continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC4736.
101 - P. Beirao , L. Armus , G. Helou 2012
NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar and an active nucleus. We present a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-inf rared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158um+[OI]63um)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7um PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158{mu}m/PAH(5.5 - 14um) is found. PAHs in the ring are responsible for a factor of two more [CII]158um and [OI]63um emission per unit mass than PAHs in the Enuc S. SED modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high intensity photodissociation regions (PDRs), in which case G0 ~ 10^2.3 and nH ~ 10^3.5 cm^-3 in the ring. For these values of G0 and nH PDR models cannot reproduce the observed H2 emission. Much of the the H2 emission in the starburst ring could come from warm regions in the diffuse ISM that are heated by turbulent dissipation or shocks.
NGC 1097 is a nearby SBb galaxy with a Seyfert nucleus and a bright starburst ring. We study the physical properties of the interstellar medium (ISM) in the ring using spatially resolved far-infrared spectral maps of the circumnuclear starburst ring of NGC 1097, obtained with the PACS spectrometer on board the Herschel Space Telescope. In particular, we map the important ISM cooling and diagnostic emission lines of [OI] 63 $mu$m, [OIII] 88 $mu$m, [NII] 122 $mu$m, [CII] 158 $mu$m and [NII] 205 $mu$m. We observe that in the [OI] 63 $mu$m, [OIII] 88 $mu$m, and [NII] 122 $mu$m line maps, the emission is enhanced in clumps along the NE part of the ring. We observe evidence of rapid rotation in the circumnuclear ring, with a rotation velocity of ~220$ km s$^{-1}$ (inclination uncorrected) measured in all lines. The [OI] 63 $mu$m/[CII] 158 $mu$m ratio varies smoothly throughout the central region, and is enhanced on the northeastern part of the ring, which may indicate a stronger radiation field. This enhancement coincides with peaks in the [OI] 63 $mu$m and [OIII] 88 $mu$m maps. Variations of the [NII] 122 $mu$m/[NII] 205 $mu$m ratio correspond to a range in the ionized gas density between 150 and 400 cm$^{-3}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا