ترغب بنشر مسار تعليمي؟ اضغط هنا

As of July 2021, there is a continuing outbreak of the B.1.617.2 (Delta) variant of SARS-CoV-2 in Sydney, Australia. The outbreak is of major concern as the Delta variant is estimated to have twice the reproductive number to previous variants that ci rculated in Australia in 2020, which is worsened by low levels of acquired immunity in the population. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, in terms of both mitigation (case isolation, home quarantine) and suppression (school closures, social distancing). Our nowcasting modelling indicated that the level of social distancing currently attained in Sydney is inadequate for the outbreak control. A counter-factual analysis suggested that if 80% of agents comply with social distancing, then at least a month is needed for the new daily cases to reduce from their peak to below ten. A small reduction in social distancing compliance to 70% lengthens this period to 45 days.
Background: To prevent future outbreaks of COVID-19, Australia is pursuing a mass-vaccination approach in which a targeted group of the population comprising healthcare workers, aged-care residents and other individuals at increased risk of exposure will receive a highly effective priority vaccine. The rest of the population will instead have access to a less effective vaccine. Methods: We apply a large-scale agent-based model of COVID-19 in Australia to investigate the possible implications of this hybrid approach to mass-vaccination. The model is calibrated to recent epidemiological and demographic data available in Australia, and accounts for several components of vaccine efficacy. Findings: Within a feasible range of vaccine efficacy values, our model supports the assertion that complete herd immunity due to vaccination is not likely in the Australian context. For realistic scenarios in which herd immunity is not achieved, we simulate the effects of mass-vaccination on epidemic growth rate, and investigate the requirements of lockdown measures applied to curb subsequent outbreaks. In our simulations, Australias vaccination strategy can feasibly reduce required lockdown intensity and initial epidemic growth rate by 43% and 52%, respectively. The severity of epidemics, as measured by the peak number of daily new cases, decreases by up to two orders of magnitude under plausible mass-vaccination and lockdown strategies. Interpretation: The study presents a strong argument for a large-scale vaccination campaign in Australia, which would substantially reduce both the intensity of future outbreaks and the stringency of non-pharmaceutical interventions required for their suppression.
Inferring linear dependence between time series is central to our understanding of natural and artificial systems. Unfortunately, the hypothesis tests that are used to determine statistically significant directed or multivariate relationships from ti me-series data often yield spurious associations (Type I errors) or omit causal relationships (Type II errors). This is due to the autocorrelation present in the analysed time series -- a property that is ubiquitous across diverse applications, from brain dynamics to climate change. Here we show that, for limited data, this issue cannot be mediated by fitting a time-series model alone (e.g., in Granger causality or prewhitening approaches), and instead that the degrees of freedom in statistical tests should be altered to account for the effective sample size induced by cross-correlations in the observations. This insight enabled us to derive modified hypothesis tests for any multivariate correlation-based measures of linear dependence between covariance-stationary time series, including Granger causality and mutual information with Gaussian marginals. We use both numerical simulations (generated by autoregressive models and digital filtering) as well as recorded fMRI-neuroimaging data to show that our tests are unbiased for a variety of stationary time series. Our experiments demonstrate that the commonly used $F$- and $chi^2$-tests can induce significant false-positive rates of up to $100%$ for both measures, with and without prewhitening of the signals. These findings suggest that many dependencies reported in the scientific literature may have been, and may continue to be, spuriously reported or missed if modified hypothesis tests are not used when analysing time series.
We examine salient trends of influenza pandemics in Australia, a rapidly urbanizing nation. To do so, we implement state-of-the-art influenza transmission and progression models within a large-scale stochastic computer simulation, generated using com prehensive Australian census datasets from 2006, 2011, and 2016. Our results offer a simulation-based investigation of a populations sensitivity to pandemics across multiple historical time points, and highlight three significant trends in pandemic patterns over the years: increased peak prevalence, faster spreading rates, and decreasing spatiotemporal bimodality. We attribute these pandemic trends to increases in two key quantities indicative of urbanization: population fraction residing in major cities, and international air traffic. In addition, we identify features of the pandemics geographic spread that we attribute to changes in the commuter mobility network. The generic nature of our model and the ubiquity of urbanization trends around the world make it likely for our results to be applicable in other rapidly urbanizing nations.
In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The indi vidual-based epidemiological model accounts for mobility (worker and student commuting) patterns and human interactions derived from the 2006 Australian census and other national data sources. The high-precision simulation comprises 19.8 million stochastically generated software agents and traces the dynamics of influenza viral infection and transmission at several scales. Using this approach, we are able to synthesise epidemics in Australia with varying outbreak locations and severity. For each scenario, we investigate the spatiotemporal profiles of these epidemics, both qualitatively and quantitatively, via incidence curves, prevalence choropleths, and epidemic synchrony. This analysis exemplifies the nature of influenza pandemics within Australia and facilitates future planning of effective intervention, mitigation and crisis management strategies.
In this work, we are interested in structure learning for a set of spatially distributed dynamical systems, where individual subsystems are coupled via latent variables and observed through a filter. We represent this model as a directed acyclic grap h (DAG) that characterises the unidirectional coupling between subsystems. Standard approaches to structure learning are not applicable in this framework due to the hidden variables, however we can exploit the properties of certain dynamical systems to formulate exact methods based on state space reconstruction. We approach the problem by using reconstruction theorems to analytically derive a tractable expression for the KL-divergence of a candidate DAG from the observed dataset. We show this measure can be decomposed as a function of two information-theoretic measures, transfer entropy and stochastic interaction. We then present two mathematically robust scoring functions based on transfer entropy and statistical independence tests. These results support the previously held conjecture that transfer entropy can be used to infer effective connectivity in complex networks.
The behaviour of many real-world phenomena can be modelled by nonlinear dynamical systems whereby a latent system state is observed through a filter. We are interested in interacting subsystems of this form, which we model by a set of coupled maps as a synchronous update graph dynamical systems. Specifically, we study the structure learning problem for spatially distributed dynamical systems coupled via a directed acyclic graph. Unlike established structure learning procedures that find locally maximum posterior probabilities of a network structure containing latent variables, our work exploits the properties of dynamical systems to compute globally optimal approximations of these distributions. We arrive at this result by the use of time delay embedding theorems. Taking an information-theoretic perspective, we show that the log-likelihood has an intuitive interpretation in terms of information transfer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا