ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp litude of the BCS order parameter averaged over the Boltzman distribution of initial states exhibits damped oscillations with a relatively short decay time. The latter is determined by the temperature, the single-particle level spacing, and the ground state value of the BCS gap for the new coupling. In contrast, the decay is essentially absent when the system was in a superfluid phase before the coupling increase.
We find a superradiant quantum phase transition in the model of triangular molecular magnets coupled to the electric component of a microwave cavity field. The transition occurs when the coupling strength exceeds a critical value which, in sharp cont rast to the standard two-level emitters, can be tuned by an external magnetic field. In addition to emitted radiation, the molecules develop an in-plane electric dipole moment at the transition. We estimate that the transition can be detected in state of the art microwave strip-line cavities containing $10^{15}$ molecules.
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases super-exponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.
We present an elementary derivation of the exact solution (Bethe-Ansatz equations) of the Dicke model, using only commutation relations and an informed Ansatz for the structure of its eigenstates.
We show that in the few-excitation regime the classical and quantum time-evolution of the inhomogeneous Dicke model for N two-level systems coupled to a single boson mode agree for N>>1. In the presence of a single excitation only, the leading term i n an 1/N-expansion of the classical equations of motion reproduces the result of the Schroedinger equation. For a small number of excitations, the numerical solutions of the classical and quantum problems become equal for N sufficiently large. By solving the Schroedinger equation exactly for two excitations and a particular inhomogeneity we obtain 1/N-corrections which lead to a significant difference between the classical and quantum solutions at a new time scale which we identify as an Ehrenferst time, given by tau_E=sqrt{N<g^2>}, where sqrt{<g^2>} is an effective coupling strength between the two-level systems and the boson.
We study the time dynamics of a single boson coupled to a bath of two-level systems (spins 1/2) with different excitation energies, described by an inhomogeneous Dicke model. Analyzing the time-dependent Schrodinger equation exactly we find that at r esonance the boson decays in time to an oscillatory state with a finite amplitude characterized by a single Rabi frequency if the inhomogeneity is below a certain threshold. In the limit of small inhomogeneity, the decay is suppressed and exhibits a complex (mainly Gaussian-like) behavior, whereas the decay is complete and of exponential form in the opposite limit. For intermediate inhomogeneity, the boson decay is partial and governed by a combination of exponential and power laws.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا