ﻻ يوجد ملخص باللغة العربية
We study the time dynamics of a single boson coupled to a bath of two-level systems (spins 1/2) with different excitation energies, described by an inhomogeneous Dicke model. Analyzing the time-dependent Schrodinger equation exactly we find that at resonance the boson decays in time to an oscillatory state with a finite amplitude characterized by a single Rabi frequency if the inhomogeneity is below a certain threshold. In the limit of small inhomogeneity, the decay is suppressed and exhibits a complex (mainly Gaussian-like) behavior, whereas the decay is complete and of exponential form in the opposite limit. For intermediate inhomogeneity, the boson decay is partial and governed by a combination of exponential and power laws.
We show that in the few-excitation regime the classical and quantum time-evolution of the inhomogeneous Dicke model for N two-level systems coupled to a single boson mode agree for N>>1. In the presence of a single excitation only, the leading term i
Using time-dependent density-matrix renormalization group, we study the time evolution of electronic wave packets in the one-dimensional extended Hubbard model with on-site and nearest neighbor repulsion, U and V, respectively. As expected, the wave
In the previous paper, we found a series expression for the average electric current following a quench in the nonequilibrium Kondo model driven by a bias voltage. Here, we evaluate the steady state current in the regimes of strong and weak coupling.
We suggest a theory for a deformable and sliding charge density wave (CDW) in the Hall bar geometry for the quantum limit when the carriers in remnant small pockets are concentrated at lowest Landau levels (LL) forming a fractionally ($ u<1$) filled
We discuss the mechanisms behind the electrically driven insulator-metal transition in single crystalline VO$_2$ nanobeams. Our DC and AC transport measurements and the versatile harmonic analysis method employed show that non-uniform Joule heating c