ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the evolution of the star formation rate (SFR) - stellar mass (M_star) relation and specific star formation rate (sSFR) of star forming galaxies (SFGs) since a redshift z~5.5 using 2435 (4531) galaxies with highly reliable (reliable) spectro scopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log(SFR) - log(M_star) relation for SFGs remains roughly linear all the way up to z=5 but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M_star>3.2 x 10^9 M_sun the SFR increases by a factor ~13 between z=0.4 and z=2.3. We extend this relation up to z=5, finding an additional increase in SFR by a factor 1.7 from z=2.3 to z=4.8 for masses M_star > 10^10 M_sun. We observe a turn-off in the SFR-M_star relation at the highest mass end up to a redshift z~3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z~2 but it grows much less rapidly in 2<z<5. We find that the shape of the sSFR evolution is not well reproduced by cold gas accretion-driven models or the latest hydrodynamical models. Below z~2 these models have a flatter evolution (1+z)^{Phi} with Phi=2-2.25 compared to the data which evolves more rapidly with Phi=2.8+-0.2. Above z~2, the reverse is happening with the data evolving more slowly with Phi=1.2+-0.1. The observed sSFR evolution over a large redshift range 0<z<5 and our finding of a non linear main sequence at high mass both indicate that the evolution of SFR and M_star is not solely driven by gas accretion. The results presented in this paper emphasize the need to invoke a more complex mix of physical processes {abridge}
We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and discs since redshift z~0.8. We performed a bulge-to-disc decomposition of HST/ACS images of 3266 galaxies in the zCOSMOS-bright survey with spectroscopic redshifts in the range 0.7 < z < 0.9. We find that the fraction of B-band light in bulges and discs is $(26 pm 4)%$ and $(74 pm 4)%$, respectively. When compared with rest-frame B-band measurements of galaxies in the local Universe in the same mass range ($10^{9} M_{odot}lessapprox M lessapprox 10^{11.5} M_{odot}$), we find that the B-band light in discs decreases by ~30% from z~0.7-0.9 to z~0, while the light from the bulge increases by ~30% over the same period of time. We interpret this evolution as the consequence of star formation and mass assembly processes, as well as morphological transformation, which gradually shift stars formed at half the age of the Universe from star-forming late-type/irregular galaxies toearlier types and ultimately into spheroids.
We present the VIMOS Ultra Deep Survey (VUDS), a spectroscopic redshift survey of ~10.000 very faint galaxies to study the major phase of galaxy assembly 2<z<~6. The survey covers 1 deg^2 in 3 separate fields: COSMOS, ECDFS and VVDS-02h, with targets selection based on an inclusive combination of photometric redshifts and color properties. Spectra covering 3650<lambda<9350 A are obtained with VIMOS on the ESO-VLT with integration times of 14h. Here we present the survey strategy, the target selection, the data processing, as well as the redshift measurement process, emphasizing the specific methods adapted to this high redshift range. The spectra quality and redshift reliability are discussed, and we derive a completeness in redshift measurement of 91%, or 74% for the most reliable measurements, down to i_AB=25, and measurements are performed all the way down to i_AB=27. The redshift distribution of the main sample peaks at z=3-4 and extends over a large redshift range mainly in 2 < z < 6. At 3<z<5, the galaxies cover a large range of luminosities -23< M_U < -20.5, stellar mass 10^9 M_sun< M_star < 10^{11} M_sun, and star formation rates 1 M_sun/yr< SFR < 10^3 M_sun/yr. We discuss the spectral properties of galaxies using individual as well as stacked spectra. The comparison between spectroscopic and photometric redshifts as well as color selection demonstrate the effectiveness of our selection scheme. With ~6000 galaxies with reliable spectroscopic redshifts in 2<z<6 expected when complete, this survey is the largest at these redshifts and offers the opportunity for unprecedented studies of the star-forming galaxy population and its distribution in large scale structures during the major phase of galaxy assembly.
Aims. The aim of this work is to constrain the evolution of the fraction of Lya emitters among UV selected star forming galaxies at 2<z<6, and to measure the stellar escape fraction of Lya photons over the same redshift range. Methods. We exploit the ultradeep spectroscopic observations collected by the VIMOS Ultra Deep Survey (VUDS) to build an unique, complete and unbiased sample of 4000 spectroscopically confirmed star forming galaxies at 2<z<6. Our galaxy sample UV luminosities brighter than M* at 2<z<6, and luminosities down to one magnitude fainter than M* at 2<z<3.5. Results. We find that 80% of the star forming galaxies in our sample have EW0(Lya)<10A, and correspondingly fesc(Lya)<1%. By comparing these results with literature, we conclude that the bulk of the Lya luminosity at 2<z<6 comes from galaxies that are fainter in the UV than those we sample in this work. The strong Lya emitters constitute, at each redshift, the tail of the distribution of the galaxies with extreme EW0(Lya) and fesc(Lya) . This tail of large EW0 and fesc(Lya) becomes more important as the redshift increases, and causes the fraction of Lya with EW0> 25A to increase from 5% at z=2 to 30% at z=6, with the increase being relatively stronger beyond z=4. We observe no difference, for the narrow range of UV luminosities explored in this work, between the fraction of strong Lya emitters among galaxies fainter or brighter than M*, although the fraction for the FUV faint galaxies evolves faster, at 2<z<3.5, than for the bright ones. We do observe an anticorrelation between E(B-V) and fesc(Lya): generally galaxies with high fesc(Lya) have also small amounts of dust (and viceversa). However, when the dust content is low (E(B-V)<0.05) we observe a very broad range of fesc(Lya), ranging from 10^-3 to 1. This implies that the dust alone is not the only regulator of the amount of escaping Lya photons.
63 - O. Le Fevre 2013
We measure and analyse the redshift distribution N(z) of magnitude-selected samples using spectroscopic redshift measurement from the magnitude-selected VIMOS VLT Deep Survey (VVDS) with 17<iAB<24.75. We compute the N(z) and provide reference paramet ric fits for i band, J, H and Ks band magnitud limited samples. The N(z) of a sample with iAB<24 has a mean redshift z=0.92, with 8.2% of the galaxies with z>2. Down to iAB<24.75 the sample has a mean redshift z=1.15 and 17.1% of the galaxies are beyond z=2. The projected sky density is 2.07+/-0.12 gal/arcmin2 at 1.4<z<2.5 and KsAB<22.5, 1.72+/-0.15 gal/arcmin2 at 2.7<z<3.4 and 0.59+/-0.09 gal/arcmin2 at 3.4<z<4.5 brighter than iAB=24.75. Galaxies at z~3 identified from magnitude-selected samples are 1.5 to 3 times more numerous than when they are colour-colour selected. We demonstrate that colour-colour selected samples over 1.4<z<4.5 are strongly contaminated by galaxies at other redshifts. Semi-analytic models on the Millennium simulations under-predict the number of luminous star-forming galaxies at zsim1.8-2, as well as over-predict the number of low-luminosity galaxies at z<0.8. Our study provides comprehensive galaxy number counts N(z) from galaxies with spectroscopic redshifts over a large redshift domain 0<z<5, a solid basis for the measurement of volume-complete quantities. Magnitude-selected surveys identify a higher number of galaxies at z>2 than in colour-colour selected samples, and we use the magnitude-selected VVDS to emphasize the large uncertainties associated to other surveys using colour or colour-colour selected samples. Our results further demonstrate that semi-analytical models on dark matter simulations have yet to find the right balance of physical processes and time-scales to properly reproduce a fundamental galaxy population property like the observed N(z).
We describe the completed VIMOS VLT Deep Survey, and the final data release of 35016 galaxies and type-I AGN with measured spectroscopic redshifts up to redshift z~6.7, in areas 0.142 to 8.7 square degrees, and volumes from 0.5x10^6 to 2x10^7h^-3Mpc^ 3. We have selected samples of galaxies based solely on their i-band magnitude reaching i_{AB}=24.75. Spectra have been obtained with VIMOS on the ESO-VLT, integrating 0.75h, 4.5h and 18h for the Wide, Deep, and Ultra-Deep nested surveys. A total of 1263 galaxies have been re-observed independently within the VVDS, and from the VIPERS and MASSIV surveys. They are used to establish the redshift measurements reliability, to assess completeness, and to provide a weighting scheme taking into account the survey selection function. We describe the main properties of the VVDS samples, and the VVDS is compared to other spectroscopic surveys. In total we have obtained spectroscopic redshifts for 34594 galaxies, 422 type-I AGN, and 12430 Galactic stars. The survey has enabled to identify galaxies up to very high redshifts with 4669 redshifts in 1<=z_{spec}<=2, 561 in 2<=z_{spec}<=3 and 468 with z_{spec}>3, and specific populations like LAE have been identified out to z=6.62. We show that the VVDS occupies a unique place in the parameter space defined by area, depth, redshift coverage, and number of spectra. The VVDS provides a comprehensive survey of the distant universe, covering all epochs since z, or more than 12 Gyr of cosmic time, with a uniform selection, the largest such sample to date. A wealth of science results derived from the VVDS have shed new light on the evolution of galaxies and AGN, and their distribution in space, over this large cosmic time. A final public release of the complete VVDS spectroscopic redshift sample is available at http://cesam.lam.fr/vvds.
The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain the source of the hard ionizing continuum that powers the HeII emission. We have assembled a sample of 277 galaxies with a high quality spectroscopic redshift at 2<z<4.6 fr om the VVDS survey, and we have identified 39 HeII1640A emitters. We study their spectral properties, measuring the fluxes, equivalent widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show HeII in emission, with rest frame equivalent widths EW0~1-7A, equally distributed between galaxies with Lya in emission or in absorption. We find 11 high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13 high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and an additional 12 possible HeII emitters. The properties of the individual broad emitters are in agreement with expectations from a W-R model. On the contrary, the properties of the narrow emitters are not compatible with such model, neither with predictions of gravitational cooling radiation produced by gas accretion. Rather, we find that the EW of the narrow HeII line emitters are in agreement with expectations for a PopIII star formation, if the episode of star formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1 only is enough to sustain the observed HeII flux. We conclude that narrow HeII emitters are either powered by the ionizing flux from a stellar population rare at z~0 but much more common at z~3, or by PopIII star formation. As proposed by Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value predicted by Tornatore et al. (2007).
Aims. The aim of this work is to study the contribution of the Ly-a emitters (LAE) to the star formation rate density (SFRD) of the Universe in the interval 2<z<6.6. Methods. We assembled a sample of 217 LAE from the Vimos-VLT Deep Survey (VVDS) wi th secure spectroscopic redshifts in the redshift range 2 < z < 6.62 and fluxes down to F=1.5x10^18 erg/s/cm^2. 133 LAE are serendipitous identifications in the 22 arcmin^2 total slit area surveyed with the VVDS-Deep and the 3.3 arcmin^2 from the VVDS Ultra-Deep survey, and 84 are targeted identifications in the 0.62 deg^2 surveyed with the VVDS-DEEP and 0.16 deg^2 from the Ultra-Deep survey. Among the serendipitous targets we estimate that 90% of the emission lines are most probably Ly-a, while the remaining 10% could be either [OII]3727 or Ly-a. We computed the LF and derived the SFRD from LAE at these redshifts. Results. The VVDS-LAE sample reaches faint line fluxes F(Lya) = 1.5x1^18 erg/s/cm^2 (corresponding to L(Lya)=10^41 erg/s at z~3) enabling the faint end slope of the luminosity function to be constrained to a=-1.6+-0.12 at redshift z~2.5 and to a=-1.78+0.1-0.12 at z=4, placing on firm statistical grounds trends found in previous LAE studies, and indicating that sub-L* LAE contribute significantly to the SFRD. The projected number density and volume density of faint LAE in 2<z<6.6 with F>1.5x10^18 erg/s/cm^2 are 33 galaxies/arcmin^2 and 4x10^-2 Mpc^-3, respectively. We find that the the observed luminosity function of LAE does not evolve from z=2 to z=6. This implies that, after correction for the redshift-dependent IGM absorption, the intrinsic LF must have evolved significantly over 3 Gyr. The SFRD from LAE contributes to about 20% of the SFRD at z =2-3, while the LAE appear to be the dominant source of star formation producing ionizing photons in the early universe z>5-6, becoming equivalent to that of Lyman Break galaxies.
(abridged abstract) We present an analysis of the stellar mass growth over the last 10 Gyrs using a large 3.6$mu$ selected sample. We split our sample into active (blue) and quiescent (red) galaxies. Our measurements of the K-LFs and LD evolution sup port the idea that a large fraction of galaxies is already assembled at $zsim 1.2$. Based on the analysis of the evolution of the stellar mass-to-light ratio (in K-band) for the spectroscopic sub-sample, we derive the stellar mass density for the entire sample. We find that the global evolution of the stellar mass density is well reproduced by the star formation rate derived from UV dust corrected measurements. Over the last 8Gyrs, we observe that the stellar mass density of the active population remains approximately constant while it gradually increases for the quiescent population over the same timescale. As a consequence, the growth of the stellar mass in the quiescent population must be due to the shutoff of star formation in active galaxies that migrate into the quiescent population. From $z=2$ to $z=1.2$, we observe a major build-up of the quiescent population with an increase by a factor of 10 in stellar mass, suggesting that we are observing the epoch when an increasing fraction of galaxies are ending their star formation activity and start to build up the red sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا