ترغب بنشر مسار تعليمي؟ اضغط هنا

148 - O. Berne , A. Fuente , E. Pantin 2015
Planets are thought to form in the gas and dust disks around young stars. In particular, it has been proposed that giant planets can form through the gravitational instability of massive extended disks around intermediate-mass stars. However, we stil l lack direct observations to constrain this mechanism. We have spatially resolved the 8.6 and 11.2 $mu$m emission of a massive protoplanetary disk seen edge on around an A star, Gomezs Hamburger (GoHam), using VISIR at the Very Large Telescope. A compact region situated at a projected distance of $350pm50$ AU south of the central star is found to have a reduced emission.This asymmetry is fully consistent with the presence of a cold density structure, or clump, identified in earlier CO observations, and we derive physical characteristics consistent with those observations: a mass of 0.8-11.4 Jupiter masses (for a dust-to-gas mass ratio of 0.01), a radius of about 10$^2$ astronomical units, and a local density of about $10^{7}$ cm$^{-3}$. Based on this evidence, we argue that this clump, which we call GoHam b, is a promising candidate for a young protoplanet formed by gravitational instability that might be representative of the precursors of massive planets observed around A stars, such as HR 8799 or Beta pictoris. More detailed studies at high angular resolution are needed to better constrain the physical properties of this object to confirm this proposal.
[Abridged] Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form by the photo-chemical processing of large polycyclic ar omatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C$_{66}$H$_{20}$ (i.e. circumovalene) can lead to the formation of C$_{60}$ upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation, folding into a floppy closed cage and shrinking of the cage by loss of C$_2$ units until it reaches the symmetric C$_{60}$ molecule. At 10 from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C$_{66}$H$_{20}$ is converted into C$_{60}$ in $sim$ 10$^5$ years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C$_{66}$H$_{20}$ are unlikely to contribute significantly to the formation of C$_{60}$, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C$_{60}$ with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C$_{60}$ are up to several $10^{-4}$ of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C$_{60}$ can survive much longer than other fullerenes because of the remarkable stability of the C$_{60}$ molecule at high internal energies.Hence, a natural consequence is that C$_{60}$ is more abundant than other fullerenes in highly irradiated environments.
The massive star forming region W3 was observed with the faint object infrared camera for the SOFIA telescope (FORCAST) as part of the Short Science program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5 and 37.1 um bandpasses were used to observe the emission of Polycyclic Aromatic Hydrocarbon (PAH) molecules, Very Small Grains and Big Grains. Optical depth and color temperature maps of W3A show that IRS2 has blown a bubble devoid of gas and dust of $sim$0.05 pc radius. It is embedded in a dusty shell of ionized gas that contributes 40% of the total 24 um emission of W3A. This dust component is mostly heated by far ultraviolet, rather than trapped Ly$alpha$ photons. This shell is itself surrounded by a thin ($sim$0.01 pc) photodissociation region where PAHs show intense emission. The infrared spectral energy distribution (SED) of three different zones located at 8, 20 and 25arcsec from IRS2, show that the peak of the SED shifts towards longer wavelengths, when moving away from the star. Adopting the stellar radiation field for these three positions, DUSTEM model fits to these SEDs yield a dust-to-gas mass ratio in the ionized gas similar to that in the diffuse ISM. However, the ratio of the IR-to-UV opacity of the dust in the ionized shell is increased by a factor $simeq$3 compared to the diffuse ISM.
The aromatic infrared bands (AIBs) observed in the mid infrared spectrum are attributed to Polycyclic Aromatic Hydrocarbons (PAHs). We observe the NGC 7023-North West (NW) PDR in the mid-infrared (10 - 19.5 micron) using the Infrared Spectrometer (IR S), on board Spitzer. Clear variations are observed in the spectra, most notably the ratio of the 11.0 to 11.2 micron bands, the peak position of the 11.2 and 12.0 micron bands, and the degree of asymmetry of the 11.2 micron band. The observed variations appear to change as a function of position within the PDR. We aim to explain these variations by a change in the abundances of the emitting components of the PDR. A Blind Signal Separation (BSS) method, i.e. a Non-Negative Matrix Factorization algorithm is applied to separate the observed spectrum into components. Using the NASA Ames PAH IR Spectroscopic Database, these extracted signals are fit. The observed signals alone were also fit using the database and these components are compared to the BSS components. Three component signals were extracted from the observation using BSS. We attribute the three signals to ionized PAHs, neutral PAHs, and Very Small Grains (VSGs). The fit of the BSS extracted spectra with the PAH database further confirms the attribution to ionized and neutral PAHs and provides confidence in both methods for producing reliable results. The 11.0 micron feature is attributed to PAH cations while the 11.2 micron band is attributed to neutral PAHs. The VSG signal shows a characteristically asymmetric broad feature at 11.3 micron with an extended red wing. By combining the NASA Ames PAH IR Spectroscopic Database fit with the BSS method, the independent results of each method can be confirmed and some limitations of each method are overcome.
Mid-infrared (IR) observations of polycyclic aromatic hydrocarbons (PAHs) and molecular hydrogen emission are a potentially powerful tool to derive physical properties of dense environments irradiated by intense UV fields. We present new, spatially r esolved, emph{Spitzer} mid-IR spectroscopy of the high UV-field and dense photodissocation region (PDR) around Monoceros R2, the closest ultracompact hII region, revealing the spatial structure of ionized gas, PAHs and H$_2$ emissions. Using a PDR model and PAH emission feature fitting algorithm, we build a comprehensive picture of the physical conditions prevailing in the region. We show that the combination of the measurement of PAH ionization fraction and of the ratio between the H$_2$ 0-0 S(3) and S(2) line intensities, respectively at 9.7 and 12.3 $mu$m, allows to derive the fundamental parameters driving the PDR: temperature, density and UV radiation field when they fall in the ranges $T = 250-1500 $K, $n_H=10^4-10^6$cm$^{-3}$, $G_0=10^3-10^5$ respectively. These mid-IR spectral tracers thus provide a tool to probe the similar but unresolved UV-illuminated surface of protoplanetary disks or the nuclei of starburst galaxies.
117 - C. Joblin , O. Berne , A. Simon 2009
Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent of interstellar dust. They have been proposed as the carriers of the Aromatic Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a significant contr ibution to various features of the extinction curve such as the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission bands are also expected in the far-IR, which are better fingerprints of molecular identity than the AIBs. They will be searched for with the Herschel Space Observatory. Rotational emission is also expected in the mm range for those molecules which carry significant dipole moments. Despite spectroscopic studies in the laboratory, no individual PAH species could be identified. This emphasises the need for an investigation on where interstellar PAHs come from and how they evolve due to environmental conditions: ionisation and dissociation upon UV irradiation, interactions with electrons, gas and dust. There is also evidence for PAH species to contribute to the depletion of heavy atoms from the gas phase, in particular Si and Fe. This paper illustrates how laboratory work can be inspired from observations. In particular there is a need for understanding the chemical properties of PAHs and PAH-related species, including very small grains, in physical conditions that mimic those found in interstellar space. This motivates a joint effort between astrophysicists, physicists and chemists. Such interdisciplinary studies are currently performed, taking advantage of the PIRENEA set-up, a cold ion trap dedicated to astrochemistry.
92 - O. Berne , C. Joblin , A. Fuente 2009
In this Paper we analyze the mid-infrared (mid-IR) emission of very small dust particles in a sample of 12 protoplanetary disks to see how they are connected to interstellar dust particles and to investigate the possibility that their emission can be used as a probe of the physical conditions and evolution of the disk. We define a basis made of three mid-IR template spectra PAH$^0$, PAH$^+$ and VSGs that were derived from the analysis of reflection nebulae, and an additional PAH$^x$ spectrum that was introduced by Joblin et al. (2008) for the analysis of the spectra of planetary nebulae. From the optimization of the fit of 12 star+disk spectra, using a linear combination of the 4 template spectra, we found that an additional small grain component with a broad feature at 8.3 $mu$m is needed. We find that the fraction of VSG emission in disks decreases with increasing stellar temperature. VSGs appear to be destroyed by UV photons at the surface of disks, thus releasing free PAH molecules, which are eventually ionized as it is observed in photodissociation regions. On the opposite, we observe that the fraction of PAH$^x$ increases with increasing star temperature except in the case of B stars where they are absent. We argue that this is compatible with the identification of PAH$^x$ as large ionized PAHs, most likely emitting in regions of the disk that are close to the star. Finally, we provide a UV-dependant scheme to explain the evolution of PAHs and VSGs in protoplanetary disks. We show that A stars modify the size spectrum of PAHs and VSGs in favor of large PAHs while B stars destroy even the largest PAHs up to large radii in the disk. These results allow us to put new constrains on the properties of two sources: IRS 48 and Gomezs Hamburger which are poorly characterized.
329 - C. Joblin , R. Szczerba , O. Berne 2008
It has been shown that the diversity of the aromatic emission features can be rationalized into different classes of objects, in which differences between circumstellar and interstellar matter are emphasised. We probe the links between the mid-IR emi tters observed in planetary nebulae (PNe) and their counterparts in the interstellar medium in order to probe a scenario in which the latter have been formed in the circumstellar environment of evolved stars. The mid-IR (6-14 um) emission spectra of PNe and compact HII regions were analysed on the basis of previous work on photodissociation regions (PDRs). Galactic, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) objects were considered in our sample.We show that the mid-IR emission of PNe can be decomposed as the sum of six components. Some components made of polycyclic aromatic hydrocarbon (PAH) and very small grain (VSG) populations are similar to those observed in PDRs. Others are fitted in an evolutionary scenario involving the destruction of the aliphatic component observed in the post-AGB stage, as well as strong processing of PAHs in the extreme conditions of PNe that leads to a population of very large ionized PAHs. This species called PAH^x are proposed as the carriers of a characteristic band at 7.90 um. This band can be used as part of diagnostics that identify PNe in nearby galaxies and is also observed in galactic compact HII regions. These results support the formation of the aromatic very small dust particles in the envelopes of evolved stars, in the Milky Way, as well as in the LMC and SMC, and their subsequent survival in the interstellar medium.
Extended Red Emission (ERE) was recently attributed to the photo-luminescence of either doubly ionized Polycyclic Aromatic Hydrocarbons (PAH$^{++}$), or charged PAH dimers. We analysed the visible and mid-infrared (mid-IR) dust emission in the North- West and South photo-dissociation regions of the reflection nebula NGC 7023.Using a blind signal separation method, we extracted the map of ERE from images obtained with the Hubble Space Telescope, and at the Canada France Hawaii Telescope. We compared the extracted ERE image to the distribution maps of the mid-IR emission of Very Small Grains (VSGs), neutral and ionized PAHs (PAH$^0$ and PAH$^+$) obtained with the Spitzer Space Telescope and the Infrared Space Observatory. ERE is dominant in transition regions where VSGs are being photo-evaporated to form free PAH molecules, and is not observed in regions dominated by PAH$^+$. Its carrier makes a minor contribution to the mid-IR emission spectrum. These results suggest that the ERE carrier is a transition species formed during the destruction of VSGs. Singly ionized PAH dimers appear as good candidates but PAH$^{++}$ molecules seem to be excluded.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا