ترغب بنشر مسار تعليمي؟ اضغط هنا

Carriers of the mid-IR emission bands in PNe reanalysed. Evidence of a link between circumstellar and interstellar aromatic dust

332   0   0.0 ( 0 )
 نشر من قبل Olivier Berne
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been shown that the diversity of the aromatic emission features can be rationalized into different classes of objects, in which differences between circumstellar and interstellar matter are emphasised. We probe the links between the mid-IR emitters observed in planetary nebulae (PNe) and their counterparts in the interstellar medium in order to probe a scenario in which the latter have been formed in the circumstellar environment of evolved stars. The mid-IR (6-14 um) emission spectra of PNe and compact HII regions were analysed on the basis of previous work on photodissociation regions (PDRs). Galactic, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) objects were considered in our sample.We show that the mid-IR emission of PNe can be decomposed as the sum of six components. Some components made of polycyclic aromatic hydrocarbon (PAH) and very small grain (VSG) populations are similar to those observed in PDRs. Others are fitted in an evolutionary scenario involving the destruction of the aliphatic component observed in the post-AGB stage, as well as strong processing of PAHs in the extreme conditions of PNe that leads to a population of very large ionized PAHs. This species called PAH^x are proposed as the carriers of a characteristic band at 7.90 um. This band can be used as part of diagnostics that identify PNe in nearby galaxies and is also observed in galactic compact HII regions. These results support the formation of the aromatic very small dust particles in the envelopes of evolved stars, in the Milky Way, as well as in the LMC and SMC, and their subsequent survival in the interstellar medium.

قيم البحث

اقرأ أيضاً

Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
The analysis of the Planck polarization E and B mode power spectra of interstellar dust emission at 353 GHz recently raised new questions on the impact of Galactic foregrounds to the detection of the polarization of the Cosmic Microwave Background (C MB) and on the physical properties of the interstellar medium (ISM). In the diffuse ISM a clear E-B asymmetry is observed, with twice as much power in E modes than in B modes; as well as a positive correlation between the total power, T, and both E and B modes, presently interpreted in terms of the link between the structure of interstellar matter and that of the Galactic magnetic field. In this paper we aim at extending the Planck analysis of the high-latitude sky to low Galactic latitude, investigating the correlation between the TEB power spectra with the gas column density from the diffuse ISM to molecular clouds. We divide the sky between Galactic latitude |b|>5 deg and |b|<60 deg in 552 circular patches and we study the cross-correlations between the TEB power spectra and the column density of each patch using the latest release of the Planck polarization data. We find that the B-to-E power ratio (BB/EE) and the TE correlation ratio (rTE) depend on column density. While the former increases going from the diffuse ISM to molecular clouds in the Gould Belt, the latter decreases. This systematic variation must be related to actual changes in ISM properties. The data show significant scatter about this mean trend. The variations of BB/EE and rTE are observed to be anti-correlated for all column densities. In the diffuse ISM, the variance of these two ratios is consistent with a stochastic non-Gaussian model in which the values of BB/EE and rTE are fixed. We finally discuss the dependencies of TB and EB with column density, which are however hampered by instrumental noise.
The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detec ted in the carbon-rich star CWLeo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emis- sion arises from a region of 6 arcseconds in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a SiC bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.
94 - M. Compiegne 2008
Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H_2 formation. With S pitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from dense to diffuse properties at the small spatial scale of the dense illuminated ridge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا