ﻻ يوجد ملخص باللغة العربية
The massive star forming region W3 was observed with the faint object infrared camera for the SOFIA telescope (FORCAST) as part of the Short Science program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5 and 37.1 um bandpasses were used to observe the emission of Polycyclic Aromatic Hydrocarbon (PAH) molecules, Very Small Grains and Big Grains. Optical depth and color temperature maps of W3A show that IRS2 has blown a bubble devoid of gas and dust of $sim$0.05 pc radius. It is embedded in a dusty shell of ionized gas that contributes 40% of the total 24 um emission of W3A. This dust component is mostly heated by far ultraviolet, rather than trapped Ly$alpha$ photons. This shell is itself surrounded by a thin ($sim$0.01 pc) photodissociation region where PAHs show intense emission. The infrared spectral energy distribution (SED) of three different zones located at 8, 20 and 25arcsec from IRS2, show that the peak of the SED shifts towards longer wavelengths, when moving away from the star. Adopting the stellar radiation field for these three positions, DUSTEM model fits to these SEDs yield a dust-to-gas mass ratio in the ionized gas similar to that in the diffuse ISM. However, the ratio of the IR-to-UV opacity of the dust in the ionized shell is increased by a factor $simeq$3 compared to the diffuse ISM.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed thirteen science flights on SOFIA. In this
We present new mid-infrared images of the central region of the Orion Nebula using the newly commissioned SOFIA airborne telescope and its 5 -- 40 micron camera FORCAST. The 37.1 micron images represent the highest resolution observations (<4) ever o
We present 37micron imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, I
We present 75x75 size maps of M82 at 6.4 micron, 6.6 micron, 7.7 micron, 31.5 micron, and 37.1 micron with a resolution of ~4 that we have obtained with the mid-IR camera FORCAST on SOFIA. We find strong emission from the inner 60 (~1kpc) along the m
We present the first spatially resolved mid-infrared (37.1 $mu$m) image of the Fomalhaut debris disk. We use PSF fitting and subtraction to distinctly measure the flux from the unresolved component and the debris disk. We measure an infrared excess i