ترغب بنشر مسار تعليمي؟ اضغط هنا

First science results from SOFIA/FORCAST: The mid-infrared view of the compact HII region W3A

220   0   0.0 ( 0 )
 نشر من قبل Francisco Salgado
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The massive star forming region W3 was observed with the faint object infrared camera for the SOFIA telescope (FORCAST) as part of the Short Science program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5 and 37.1 um bandpasses were used to observe the emission of Polycyclic Aromatic Hydrocarbon (PAH) molecules, Very Small Grains and Big Grains. Optical depth and color temperature maps of W3A show that IRS2 has blown a bubble devoid of gas and dust of $sim$0.05 pc radius. It is embedded in a dusty shell of ionized gas that contributes 40% of the total 24 um emission of W3A. This dust component is mostly heated by far ultraviolet, rather than trapped Ly$alpha$ photons. This shell is itself surrounded by a thin ($sim$0.01 pc) photodissociation region where PAHs show intense emission. The infrared spectral energy distribution (SED) of three different zones located at 8, 20 and 25arcsec from IRS2, show that the peak of the SED shifts towards longer wavelengths, when moving away from the star. Adopting the stellar radiation field for these three positions, DUSTEM model fits to these SEDs yield a dust-to-gas mass ratio in the ionized gas similar to that in the diffuse ISM. However, the ratio of the IR-to-UV opacity of the dust in the ionized shell is increased by a factor $simeq$3 compared to the diffuse ISM.



قيم البحث

اقرأ أيضاً

The Stratospheric Observatory for Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed thirteen science flights on SOFIA. In this paper we describe the design, operation and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near diffraction-limited images for lambda > 30 microns allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST.
We present new mid-infrared images of the central region of the Orion Nebula using the newly commissioned SOFIA airborne telescope and its 5 -- 40 micron camera FORCAST. The 37.1 micron images represent the highest resolution observations (<4) ever o btained of this region at these wavelengths. After BN/KL (which is described in a separate letter in this issue), the dominant source at all wavelengths except 37.1 micron is the Ney-Allen Nebula, a crescent-shaped extended source associated with theta 1D. The morphology of the Ney-Allen nebula in our images is consistent with the interpretation that it is ambient dust swept up by the stellar wind from theta 1D, as suggested by Smith et al. (2005). Our observations also reveal emission from two proplyds (proto-planetary disks), and a few embedded young stellar objects (YSOs; IRc9, and OMC1S IRS1, 2, and 10). The spectral energy distribution for IRc9 is presented and fitted with standard YSO models from Robitaille et al. (2007) to constrain the total luminosity, disk size, and envelope size. The diffuse, nebular emission we observe at all FORCAST wavelengths is most likely from the background photodissociation region (PDR) and shows structure that coincides roughly with H_alpha and [N II] emission. We conclude that the spatial variations in the diffuse emission are likely due to undulations in the surface of the background PDR.
We present 37micron imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, I RS 1, 2 and 3, and are nearly at the diffraction limit of the 2.5-m telescope. We also obtained a small number of images at 11 and 31micron that are useful for flux measurement. Our images cover the area of several strong sub-mm sources seen in the area -- SMM 1, 2, and 3 -- that are not coincident with any mid-infrared sources and are not visible in our longer wavelength imaging either. Our new observations confirm previous estimates of the relative dust optical depth and source luminosity for the components in this likely cluster of early B stars. We also investigate the use of super-resolution to go beyond the basic diffraction limit in imaging on SOFIA and find that the van Cittert algorithm, together with the multi-resolution technique, provides excellent results.
We present 75x75 size maps of M82 at 6.4 micron, 6.6 micron, 7.7 micron, 31.5 micron, and 37.1 micron with a resolution of ~4 that we have obtained with the mid-IR camera FORCAST on SOFIA. We find strong emission from the inner 60 (~1kpc) along the m ajor axis, with the main peak 5 west-southwest of the nucleus and a secondary peak 4 east-northeast of the nucleus. The detailed morphology of the emission differs among the bands, which is likely due to different dust components dominating the continuum emission at short mid-IR wavelengths and long mid-IR wavelengths. We include Spitzer-IRS and Herschel/PACS 70 micron data to fit spectral energy distribution templates at both emission peaks. The best fitting templates have extinctions of A_V = 18 and A_V = 9 toward the main and secondary emission peak and we estimated a color temperature of 68 K at both peaks from the 31 micron and 37 micron measurement. At the emission peaks the estimated dust masses are on the order of 10^{4} M_sun.
54 - J. D. Adams 2018
We present the first spatially resolved mid-infrared (37.1 $mu$m) image of the Fomalhaut debris disk. We use PSF fitting and subtraction to distinctly measure the flux from the unresolved component and the debris disk. We measure an infrared excess i n the point source of $0.9 pm 0.2$ Jy, consistent with emission from warm dust in an inner disk structure (Su et al. 2016), and inconsistent with a stellar wind origin. We cannot confirm or rule out the presence of a pileup ring (Su et al. 2016) near the star. In the cold region, the 37 $mu$m imaging is sensitive to emission from small, blowout grains, which is an excellent probe of the dust production rate from planetesimal collisions. Under the assumptions that the dust grains are icy aggregates and the debris disk is in steady state, this result is consistent with the dust production rates predicted by Kenyon & Bromley (2008) from theoretical models of icy planet formation. We find a dust luminosity of $(7.9 pm 0.8) times 10^{-4}$ L$_odot$ and a dust mass of 8 -- 16 lunar masses, depending on grain porosity, with $sim 1$ lunar mass in grains with radius 1 $mu$m -- 1 mm. If the grains are icy and highly porous, meter-sized objects must be invoked to explain the far-IR, submm, and mm emission. If the grains are composed of astronomical silicates, there is a dearth of blowout grains (Pawellek et al. 2014) and the mass loss rate is well below the predicted dust production values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا