ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - Nicolas Michel 2013
In nature, one observes that a K-theory of an object is defined in two steps. First a structured category is associated to the object. Second, a K-theory machine is applied to the latter category to produce an infinite loop space. We develop a genera l framework that deals with the first step of this process. The K-theory of an object is defined via a category of locally trivial objects with respect to a pretopology. We study conditions ensuring an exact structure on such categories. We also consider morphisms in K-theory that such contexts naturally provide. We end by defining various K-theories of schemes and morphisms between them.
84 - Nicolas Michel 2011
Recall that the definition of the $K$-theory of an object C (e.g., a ring or a space) has the following pattern. One first associates to the object C a category A_C that has a suitable structure (exact, Waldhausen, symmetric monoidal, ...). One then applies to the category A_C a $K$-theory machine, which provides an infinite loop space that is the $K$-theory K(C) of the object C. We study the first step of this process. What are the kinds of objects to be studied via $K$-theory? Given these types of objects, what structured categories should one associate to an object to obtain $K$-theoretic information about it? And how should the morphisms of these objects interact with this correspondence? We propose a unified, conceptual framework for a number of important examples of objects studied in $K$-theory. The structured categories associated to an object C are typically categories of modules in a monoidal (op-)fibred category. The modules considered are locally trivial with respect to a given class of trivial modules and a given Grothendieck topology on the object Cs category.
Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism . We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute ~0.3% density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a puller stresslet, and can be described by a simple three-Stokeslet model.
74 - Nicolas Michel 2008
Demonstrating the completeness of wave functions solutions of the radial Schrodinger equation is a very difficult task. Existing proofs, relying on operator theory, are often very abstract and far from intuitive comprehension. However, it is possible to obtain rigorous proofs amenable to physical insight, if one restricts the considered class of Schrodinger potentials. One can mention in particular unbounded potentials yielding a purely discrete spectrum and short-range potentials. However, those possessing a Coulomb tail, very important for physical applications, have remained problematic due to their long-range character. The method proposed in this paper allows to treat them correctly, provided the non-Coulomb part of potentials vanishes after a finite radius. Non-locality of potentials can also be handled. The main idea in the proposed demonstration is that regular solutions behave like sine/cosine functions for large momenta, so that their expansions verify Fourier transform properties. The highly singular point at k = 0 of long-range potentials is dealt with properly using analytical properties of Coulomb wave functions. Lebesgue measure theory is avoided, rendering the demonstration clear from a physical point of view.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا