ﻻ يوجد ملخص باللغة العربية
In nature, one observes that a K-theory of an object is defined in two steps. First a structured category is associated to the object. Second, a K-theory machine is applied to the latter category to produce an infinite loop space. We develop a general framework that deals with the first step of this process. The K-theory of an object is defined via a category of locally trivial objects with respect to a pretopology. We study conditions ensuring an exact structure on such categories. We also consider morphisms in K-theory that such contexts naturally provide. We end by defining various K-theories of schemes and morphisms between them.
Derived categories were invented by Grothendieck and Verdier around 1960, not very long after the old homological algebra (of derived functors between abelian categories) was established. This new homological algebra, of derived categories and derive
We construct an analytic multiplicative model of smooth K-theory. We further introduce the notion of a smooth K-orientation of a proper submersion and define the associated push-forward which satisfies functoriality, compatibility with pull-back diag
Generalized differential cohomology theories, in particular differential K-theory (often called smooth K-theory), are becoming an important tool in differential geometry and in mathematical physics. In this survey, we describe the developments of the
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators,
Recall that the definition of the $K$-theory of an object C (e.g., a ring or a space) has the following pattern. One first associates to the object C a category A_C that has a suitable structure (exact, Waldhausen, symmetric monoidal, ...). One then