ﻻ يوجد ملخص باللغة العربية
Demonstrating the completeness of wave functions solutions of the radial Schrodinger equation is a very difficult task. Existing proofs, relying on operator theory, are often very abstract and far from intuitive comprehension. However, it is possible to obtain rigorous proofs amenable to physical insight, if one restricts the considered class of Schrodinger potentials. One can mention in particular unbounded potentials yielding a purely discrete spectrum and short-range potentials. However, those possessing a Coulomb tail, very important for physical applications, have remained problematic due to their long-range character. The method proposed in this paper allows to treat them correctly, provided the non-Coulomb part of potentials vanishes after a finite radius. Non-locality of potentials can also be handled. The main idea in the proposed demonstration is that regular solutions behave like sine/cosine functions for large momenta, so that their expansions verify Fourier transform properties. The highly singular point at k = 0 of long-range potentials is dealt with properly using analytical properties of Coulomb wave functions. Lebesgue measure theory is avoided, rendering the demonstration clear from a physical point of view.
We consider the Landau Hamiltonian $H_0$, self-adjoint in $L^2({mathbb R^2})$, whose spectrum consists of an arithmetic progression of infinitely degenerate positive eigenvalues $Lambda_q$, $q in {mathbb Z}_+$. We perturb $H_0$ by a non-local potenti
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
We investigate the local energy decay of solutions of the Dirac equation in the non-extreme Kerr-Newman metric. First, we write the Dirac equation as a Cauchy problem and define the Dirac operator. It is shown that the Dirac operator is selfadjoint i
Recently, we have demonstrated that some subsolutions of the free Duffin-Kemmer-Petiau and the Dirac equations obey the same Dirac equation with some built-in projection operators. In the present paper we study the Dirac equation in the interacting c
Consider in $L^2 (R^l)$ the operator family $H(epsilon):=P_0(hbar,omega)+epsilon Q_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $om$, $Q_0$ a bounded pseudodifferential operator with symbol holomorphic and decreasing