ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding visual scenes relies more and more on dense pixel-wise classification obtained via deep fully convolutional neural networks. However, due to the nature of the networks, predictions often suffer from blurry boundaries and ill-segmented s hapes, fueling the need for post-processing. This work introduces a new semantic segmentation regularization based on the regression of a distance transform. After computing the distance transform on the label masks, we train a FCN in a multi-task setting in both discrete and continuous spaces by learning jointly classification and distance regression. This requires almost no modification of the network structure and adds a very low overhead to the training process. Learning to approximate the distance transform back-propagates spatial cues that implicitly regularizes the segmentation. We validate this technique with several architectures on various datasets, and we show significant improvements compared to competitive baselines.
This work addresses the scarcity of annotated hyperspectral data required to train deep neural networks. Especially, we investigate generative adversarial networks and their application to the synthesis of consistent labeled spectra. By training such networks on public datasets, we show that these models are not only able to capture the underlying distribution, but also to generate genuine-looking and physically plausible spectra. Moreover, we experimentally validate that the synthetic samples can be used as an effective data augmentation strategy. We validate our approach on several public hyper-spectral datasets using a variety of deep classifiers.
In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale re mote sensing data for semantic labeling. Our contributions are threefold: a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, b) we investigate early and late fusion of Lidar and multispectral data, c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا