ﻻ يوجد ملخص باللغة العربية
Understanding visual scenes relies more and more on dense pixel-wise classification obtained via deep fully convolutional neural networks. However, due to the nature of the networks, predictions often suffer from blurry boundaries and ill-segmented shapes, fueling the need for post-processing. This work introduces a new semantic segmentation regularization based on the regression of a distance transform. After computing the distance transform on the label masks, we train a FCN in a multi-task setting in both discrete and continuous spaces by learning jointly classification and distance regression. This requires almost no modification of the network structure and adds a very low overhead to the training process. Learning to approximate the distance transform back-propagates spatial cues that implicitly regularizes the segmentation. We validate this technique with several architectures on various datasets, and we show significant improvements compared to competitive baselines.
Convolutional neural networks for semantic segmentation suffer from low performance at object boundaries. In medical imaging, accurate representation of tissue surfaces and volumes is important for tracking of disease biomarkers such as tissue morpho
Tubular structure segmentation in medical images, e.g., segmenting vessels in CT scans, serves as a vital step in the use of computers to aid in screening early stages of related diseases. But automatic tubular structure segmentation in CT scans is a
In semantic segmentation, we aim to train a pixel-level classifier to assign category labels to all pixels in an image, where labeled training images and unlabeled test images are from the same distribution and share the same label set. However, in a
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding ap
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815), which takes a source image and a corresponding quality map as inputs and produce a compressed image with variable rates. Our model covers