ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of the effective string that describes the infrared dynamics of SU(2) Yang-Mills theory in three dimensions. By combining high-precision lattice simulation results for Polyakov-loop correlators at finite temperatures close to (and less than) the deconfinement one with the analytical constraints from renormalization-group arguments, from the exact integrability of the two-dimensional Ising model that describes the universality class of the critical point of the theory, from conformal perturbation theory, and from Lorentz invariance, we derive tight quantitative bounds on the corrections to the effective string action beyond the Nambu-Goto approximation. We show that these corrections are compatible with the predictions derived from a bootstrap analysis of the effective string theory, but are inconsistent with the axionic string ansatz.
Current statistics of an antidot in the fractional quantum Hall regime is studied for Laughlins series. The chiral Luttinger liquid picture of edge states with a renormalized interaction exponent $g$ is adopted. Several peculiar features are found in the sequential tunneling regime. On one side, current displays negative differential conductance and double-peak structures when $g<1$. On the other side, universal sub-poissonian transport regimes are identified through an analysis of higher current moments. A comparison between Fano factor and skewness is proposed in order to clearly distinguish the charge of the carriers, regardless of possible non-universal interaction renormalizations. Super-poissonian statistics is obtained in the shot limit for $g<1$, and plasmonic effects due to the finite-size antidot are tracked.
The relation between the conductivity tensors of Composite Fermions and electrons is extended to second generation Composite Fermions. It is shown that it crucially depends on the coupling matrix for the Chern-Simons gauge field. The results are appl ied to a model of interacting Composite Fermions that can explain both the anomalous plateaus in spin polarization and the corresponding maxima in the resistivity observed in recent transport experiments.
The effects of interactions in a 2D electron system in a strong magnetic field of two degenerate Landau levels with opposite spins and at filling factors 1/2 are studied. Using the Chern-Simons gauge transformation, the system is mapped to Composite Fermions. The fluctuations of the gauge field induce an effective interaction between the Composite Fermions which can be attractive in both the particle-particle and in the particle-hole channel. As a consequence, a spin-singlet (s-wave) ground state of Composite Fermions can exist with a finite pair-breaking energy gap for particle-particle or particle-hole pairs. The competition between these two possible ground states is discussed. For long-range Coulomb interaction the particle-particle state is favored if the interaction strength is small. With increasing interaction strength there is a crossover towards the particle-hole state. If the interaction is short range, only the particle-particle state is possible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا