ترغب بنشر مسار تعليمي؟ اضغط هنا

On ground states of interacting Composite Fermions with spin at half filling

214   0   0.0 ( 0 )
 نشر من قبل Matteo Merlo
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of interactions in a 2D electron system in a strong magnetic field of two degenerate Landau levels with opposite spins and at filling factors 1/2 are studied. Using the Chern-Simons gauge transformation, the system is mapped to Composite Fermions. The fluctuations of the gauge field induce an effective interaction between the Composite Fermions which can be attractive in both the particle-particle and in the particle-hole channel. As a consequence, a spin-singlet (s-wave) ground state of Composite Fermions can exist with a finite pair-breaking energy gap for particle-particle or particle-hole pairs. The competition between these two possible ground states is discussed. For long-range Coulomb interaction the particle-particle state is favored if the interaction strength is small. With increasing interaction strength there is a crossover towards the particle-hole state. If the interaction is short range, only the particle-particle state is possible.



قيم البحث

اقرأ أيضاً

There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variationa l study, we consider the Fermi sea, the Pfaffian paired state, and bubble and stripe phases of composite fermions, and find that the Fermi sea state is favored for a wide range of transverse thickness. However, when we incorporate interactions between composite fermions through composite-fermion diagonalization on systems with up to 25 composite fermions, we find that a gap opens at the Fermi level, suggesting that inter-composite fermion interaction can induce fractional quantum Hall effect at $ u=2+3/8$. The resulting state is seen to be distinct from the Pfaffian wave function.
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions are Dirac particles. In our work, we demonstrate experimentally that composite fermions found in monolayer graphene are Dirac particles at half filling. Our experiments have addressed FQH states in high-mobility, suspended graphene Corbino disks in the vicinity of $ u=1/2$. We find strong temperature dependence of conductivity $sigma$ away from half filling, which is consistent with the expected electron-electron interaction induced gaps in the FQH state. At half filling, however, the temperature dependence of conductivity $sigma(T)$ becomes quite weak as expected for a Fermi sea of composite fermions and we find only logarithmic dependence of $sigma$ on $T$. The sign of this quantum correction coincides with weak antilocalization of composite fermions, which reveals the relativistic Dirac nature of composite fermions in graphene.
Spin excitations from a partially populated composite fermion level are studied above and below $ u=1/3$. In the range $2/7< u<2/5$ the experiments uncover significant departures from the non-interacting composite fermion picture that demonstrate the increasing impact of interactions as quasiparticle Landau levels are filled. The observed onset of a transition from free to interacting composite fermions could be linked to condensation into the higher order states suggested by transport experiments and numerical evaluations performed in the same filling factor range.
The relation between the conductivity tensors of Composite Fermions and electrons is extended to second generation Composite Fermions. It is shown that it crucially depends on the coupling matrix for the Chern-Simons gauge field. The results are appl ied to a model of interacting Composite Fermions that can explain both the anomalous plateaus in spin polarization and the corresponding maxima in the resistivity observed in recent transport experiments.
We evaluate the dynamic structure factor $S(q,omega)$ of interacting one-dimensional spinless fermions with a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions leads to new universal features of $S (q,omega)$. The sharp peak $Spropto qdelta(omega-uq)$, characteristic for the Tomonaga-Luttinger model, broadens up; $S(q,omega)$ for a fixed $q$ becomes finite at arbitrarily large $omega$. The main spectral weight, however, is confined to a narrow frequency interval of the width $deltaomegasim q^2/m$. At the boundaries of this interval the structure factor exhibits power-law singularities with exponents depending on the interaction strength and on the wave number $q$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا