ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - Ryo Shimano , Naoto Tsuji 2019
When a continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is recently referred to as the Higgs mode as it is a condensed-matter analogue of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light-Higgs coupling. In this review, we overview recent progresses on the study of the Higgs mode in superconductors.
Here we have developed a FLEX+DMFT formalism, where the symmetry properties of the system are incorporated by constructing a SO(4) generalization of the conventional fluctuation-exchange approximation (FLEX) coupled self-consistently to the dynamical mean-field theory (DMFT). Along with this line, we emphasize that the SO(4) symmetry is the lowest group-symmetry that enables us to investigate superconductivity and antiferromagnetism on an equal footing. We have imposed this by decomposing the electron operator into auxiliary fermionic and slave-boson constituents that respect SU(2)$_{rm spin}otimes$SU(2)$_{eta{rm spin}}$. This is used not in a mean-field treatment as in the usual slave-boson formalisms, but instead in the DMFT impurity solver with an SU(2)$_{rm spin}otimes$SU(2)$_{eta{rm spin}}$ hybridization function to incorporate the FLEX-generated bath information into DMFT iterations. While there have been attempts such as the doublon-less SU(2) slave-boson formalism, the present full-SU(2) slave-boson formalism is expected to provide a new platform for addressing the underlying physics for various quantum orders, which compete with each other and can coexist.
We study the dynamical behavior of doped electronic systems subject to a global ramp of the repulsive Hubbard interaction. We start with formulating a real-time generalization of the fluctuation-exchange approximation. Implementing this numerically, we investigate the weak-coupling regime of the Hubbard model both in the electron-doped and hole-doped regimes. The results show that both local and nonlocal (momentum-dependent) observables evolve toward a thermal state, although the temperature of the final state depends on the ramp duration and the chemical doping. We further reveal a momentum-dependent relaxation rate of the distribution function in doped systems, and trace back its physical origin to the anisotropic self-energies in the momentum space.
Magnetic insulators have been intensively studied for over 100 years, and they, in particular ferrites, are considered to be the cradle of magnetic exchange interactions in solids. Their wide range of applications include microwave devices and perman ent magnets . They are also suitable for spintronic devices owing to their high resistivity, low magnetic damping, and spin-dependent tunneling probabilities. The Curie temperature is the crucial factor determining the temperature range in which any ferri/ferromagnetic system remains stable. However, the record Curie temperature has stood for over eight decades in insulators and oxides (943 K for spinel ferrite LiFe5O8). Here we show that a highly B-site ordered double-perovskite, Sr2(SrOs)O6 (Sr3OsO6), surpasses this long standing Curie temperature record by more than 100 K. We revealed this B-site ordering by atomic-resolution scanning transmission electron microscopy. The density functional theory (DFT) calculations suggest that the large spin-orbit coupling (SOC) of Os6+ 5d2 orbitals drives the system toward a Jeff = 3/2 ferromagnetic (FM) insulating state. Moreover, the Sr3OsO6 is the first epitaxially grown osmate, which means it is highly compatible with device fabrication processes and thus promising for spintronic applications.
Recent advances in time-domain terahertz (THz) spectroscopy have unveiled that resonantly-enhanced strong THz third-harmonic generation (THG) mediated by the collective Higgs amplitude mode occurs in s-wave superconductors, where charge-density fluct uations (CDF) have also been shown to contribute to the nonlinear third-order susceptibility. It has been theoretically proposed that the nonlinear responses of Higgs and CDF exhibit essentially different polarization dependences. Here we experimentally discriminate the two contributions by polarization-resolved intense THz transmission spectroscopy for a single-crystal NbN film. The result shows that the resonant THG in the transmitted light always appears in the polarization parallel to that of the incident light with no appreciable crystal axis dependence. When we compare this with the theoretical calculation here with the BCS approximation and the dynamical mean-field theory for a model of NbN constructed from first principles, the experimental result strongly indicates that the Higgs mode rather than the CDF dominates the THG resonance in NbN. A possible mechanism for this is discussed such as the retardation effect in the phonon-mediated pairing interaction beyond BCS.
We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the SC gap, the SC order parameter and the superfluid density as a result of the driving, and this tendency is most prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is weakened by the external modulations, in particular at the parametric resonance. In the weak coupling regime, we find that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest suppression occurs again around the parametric resonances because of the efficient energy absorption.
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous distortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk distorted Fermi surface is modified from the d-wave pairing to (d+s)-wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature $T_{rm c}^{rm PI}$ of Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting $T_{rm c}^{rm SC}$. This implies that the filling region for strong Pomeranchuk instability and that for strong superconducting fluctuations can be separated, and Pomeranchuk instability can appear even if the peak of $T_c^{rm PI}$ is lower than the peak of $T_c^{rm SC}$. An interesting observation is that the Fermi surface distortion can enhance the superconducting $T_{rm c}^{rm SC}$ in the overdoped regime, which is explained with a perturbation picture for small distortions.
The dynamical mean-field theory (DMFT) combined with the fluctuation exchange (FLEX) method, namely FLEX+DMFT, is an approach for correlated electron systems to incorporate both local and non-local long-range correlations in a self-consistent manner. We formulate FLEX+DMFT in a systematic way starting from a Luttinger-Ward functional, and apply it to study the $d$-wave superconductivity in the two-dimensional repulsive Hubbard model. The critical temperature ($T_c$) curve obtained in the FLEX+DMFT exhibits a dome structure as a function of the filling, which has not been clearly observed in the FLEX approach alone. We trace back the origin of the dome to the local vertex correction from DMFT that renders a filling dependence in the FLEX self-energy. We compare the results with those of GW+DMFT, where the $T_c$-dome structure is qualitatively reproduced due to the same vertex correction effect, but a crucial difference from FLEX+DMFT is that $T_c$ is always estimated below the N{e}el temperature in GW+DMFT. The single-particle spectral function obtained with FLEX+DMFT exhibits a double-peak structure as a precursor of the Hubbard bands at temperature above $T_c$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا