ترغب بنشر مسار تعليمي؟ اضغط هنا

SO(4) FLEX+DMFT formalism with SU(2)$otimes$SU(2)-symmetric impurity solver for superconductivity in the repulsive Hubbard model

201   0   0.0 ( 0 )
 نشر من قبل Sharareh Sayyad
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we have developed a FLEX+DMFT formalism, where the symmetry properties of the system are incorporated by constructing a SO(4) generalization of the conventional fluctuation-exchange approximation (FLEX) coupled self-consistently to the dynamical mean-field theory (DMFT). Along with this line, we emphasize that the SO(4) symmetry is the lowest group-symmetry that enables us to investigate superconductivity and antiferromagnetism on an equal footing. We have imposed this by decomposing the electron operator into auxiliary fermionic and slave-boson constituents that respect SU(2)$_{rm spin}otimes$SU(2)$_{eta{rm spin}}$. This is used not in a mean-field treatment as in the usual slave-boson formalisms, but instead in the DMFT impurity solver with an SU(2)$_{rm spin}otimes$SU(2)$_{eta{rm spin}}$ hybridization function to incorporate the FLEX-generated bath information into DMFT iterations. While there have been attempts such as the doublon-less SU(2) slave-boson formalism, the present full-SU(2) slave-boson formalism is expected to provide a new platform for addressing the underlying physics for various quantum orders, which compete with each other and can coexist.



قيم البحث

اقرأ أيضاً

In this paper we revisit the isomorphism $SU(2)otimes SU(2)cong SO(4)$ to apply to some subjects in Quantum Computation and Mathematical Physics. The unitary matrix $Q$ by Makhlin giving the isomorphism as an adjoint action is studied and generaliz ed from a different point of view. Some problems are also presented. In particular, the homogeneous manifold $SU(2n)/SO(2n)$ which characterizes entanglements in the case of $n=2$ is studied, and a clear-cut calculation of the universal Yang-Mills action in (hep-th/0602204) is given for the abelian case.
The dynamical mean-field theory (DMFT) combined with the fluctuation exchange (FLEX) method, namely FLEX+DMFT, is an approach for correlated electron systems to incorporate both local and non-local long-range correlations in a self-consistent manner. We formulate FLEX+DMFT in a systematic way starting from a Luttinger-Ward functional, and apply it to study the $d$-wave superconductivity in the two-dimensional repulsive Hubbard model. The critical temperature ($T_c$) curve obtained in the FLEX+DMFT exhibits a dome structure as a function of the filling, which has not been clearly observed in the FLEX approach alone. We trace back the origin of the dome to the local vertex correction from DMFT that renders a filling dependence in the FLEX self-energy. We compare the results with those of GW+DMFT, where the $T_c$-dome structure is qualitatively reproduced due to the same vertex correction effect, but a crucial difference from FLEX+DMFT is that $T_c$ is always estimated below the N{e}el temperature in GW+DMFT. The single-particle spectral function obtained with FLEX+DMFT exhibits a double-peak structure as a precursor of the Hubbard bands at temperature above $T_c$.
We study the left-right asymmetric model based on SU(3)_C otimes SU(2)_L otimes SU(3)_R otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields tha t the fermion generation number is three, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses as well as dark matter automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, Z_R, and new neutral scalar, H_2, to flavor-violating neutral meson mixings, say K-bar{K}, B_d-bar{B}_d, and B_s-bar{B}_s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the rho-parameter as well as the mixing parameters between W, Z bosons and new gauge bosons.
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous distortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk distorted Fermi surface is modified from the d-wave pairing to (d+s)-wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature $T_{rm c}^{rm PI}$ of Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting $T_{rm c}^{rm SC}$. This implies that the filling region for strong Pomeranchuk instability and that for strong superconducting fluctuations can be separated, and Pomeranchuk instability can appear even if the peak of $T_c^{rm PI}$ is lower than the peak of $T_c^{rm SC}$. An interesting observation is that the Fermi surface distortion can enhance the superconducting $T_{rm c}^{rm SC}$ in the overdoped regime, which is explained with a perturbation picture for small distortions.
70 - P. Grinza , B. Ponsot 2004
Massless flows between the coset model su(2)_{k+1} otimes su(2)_k /su(2)_{2k+1} and the minimal model M_{k+2} are studied from the viewpoint of form factors. These flows include in particular the flow between the Tricritical Ising model and the Ising model. Form factors of the trace operator with an arbitrary number of particles are constructed, and numerical checks on the central charge are performed with four particles contribution. Large discrepancies with respect to the exact results are observed in most cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا