ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we present a finite difference heterogeneous multiscale method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient. The approach combines a higher order discretization and artificial damping in the so-calle d micro problem to obtain an efficient implementation. The influence of different parameters on the resulting approximation error is discussed. Numerical examples for both periodic as well as more general coefficients are given to demonstrate the functionality of the approach.
Optimal transport (OT) plays an essential role in various areas like machine learning and deep learning. However, computing discrete optimal transport plan for large scale problems with adequate accuracy and efficiency is still highly challenging. Re cently, methods based on the Sinkhorn algorithm add an entropy regularizer to the prime problem and get a trade off between efficiency and accuracy. In this paper, we propose a novel algorithm to further improve the efficiency and accuracy based on Nesterovs smoothing technique. Basically, the non-smooth c-transform of the Kantorovich potential is approximated by the smooth Log-Sum-Exp function, which finally smooths the original non-smooth Kantorovich dual functional (energy). The smooth Kantorovich functional can be optimized by the fast proximal gradient algorithm (FISTA) efficiently. Theoretically, the computational complexity of the proposed method is given by $O(n^{frac{5}{2}} sqrt{log n} /epsilon)$, which is lower than that of the Sinkhorn algorithm. Empirically, compared with the Sinkhorn algorithm, our experimental results demonstrate that the proposed method achieves faster convergence and better accuracy with the same parameter.
In this paper, we consider several possible ways to set up Heterogeneous Multiscale Methods for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, which can be seen as a means to modeling rapidly varying ferromagnetic mater ials. We then prove estimates for the errors introduced when approximating the relevant quantity in each of the models given a periodic problem, using averaging in time and space of the solution to a corresponding micro problem. In our setup, the Landau-Lifshitz equation with highly oscillatory coefficient is chosen as the micro problem for all models. We then show that the averaging errors only depend on $varepsilon$, the size of the microscopic oscillations, as well as the size of the averaging domain in time and space and the choice of averaging kernels.
309 - Min Zhang , Dongsheng An , Na Lei 2021
Biomarkers play an important role in early detection and intervention in Alzheimers disease (AD). However, obtaining effective biomarkers for AD is still a big challenge. In this work, we propose to use the worst transportation cost as a univariate b iomarker to index cortical morphometry for tracking AD progression. The worst transportation (WT) aims to find the least economical way to transport one measure to the other, which contrasts to the optimal transportation (OT) that finds the most economical way between measures. To compute the WT cost, we generalize the Brenier theorem for the OT map to the WT map, and show that the WT map is the gradient of a concave function satisfying the Monge-Ampere equation. We also develop an efficient algorithm to compute the WT map based on computational geometry. We apply the algorithm to analyze cortical shape difference between dementia due to AD and normal aging individuals. The experimental results reveal the effectiveness of our proposed method which yields better statistical performance than other competiting methods including the OT.
In this paper, we consider homogenization of the Landau-Lifshitz equation with a highly oscillatory material coefficient with period $varepsilon$ modeling a ferromagnetic composite. We derive equations for the homogenized solution to the problem and the corresponding correctors and obtain estimates for the difference between the exact and homogenized solution as well as corrected approximations to the solution. Convergence rates in $varepsilon$ over times $O(varepsilon^sigma)$ with $0leq sigmaleq 2$ are given in the Sobolev norm $H^q$, where $q$ is limited by the regularity of the solution to the detailed Landau-Lifshitz equation and the homogenized equation. The rates depend on $q$, $sigma$ and the the number of correctors.
This work proposes a rigorous and practical algorithm for generating meromorphic quartic differentials for the purpose of quad-mesh generation. The work is based on the Abel-Jacobi theory of algebraic curve. The algorithm pipeline can be summarized a s follows: calculate the homology group; compute the holomorphic differential group; construct the period matrix of the surface and Jacobi variety; calculate the Abel-Jacobi map for a given divisor; optimize the divisor to satisfy the Abel-Jacobi condition by an integer programming; compute the flat Riemannian metric with cone singularities at the divisor by Ricci flow; isometric immerse the surface punctured at the divisor onto the complex plane and pull back the canonical holomorphic differential to the surface to obtain the meromorphic quartic differential; construct the motor-graph to generate the resulting T-Mesh. The proposed method is rigorous and practical. The T-mesh results can be applied for constructing T-Spline directly. The efficiency and efficacy of the proposed algorithm are demonstrated by experimental results.
This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic. Each quad-mesh induces a conformal structure of the surface, and a meromorphic differential, where the configuration of singular vertices correspond to the configurations the poles and zeros (divisor) of the meroromorphic differential. Due to Riemann surface theory, the configuration of singularities of a quad-mesh satisfies the Abel-Jacobi condition. Inversely, if a satisfies the Abel-Jacobi condition, then there exists a meromorphic quartic differential whose equals to the given one. Furthermore, if the meromorphic quadric differential is with finite, then it also induces a a quad-mesh, the poles and zeros of the meromorphic differential to the singular vertices of the quad-mesh. Besides the theoretic proofs, the computational algorithm for verification of Abel-Jacobi condition is explained in details. Furthermore, constructive algorithm of meromorphic quartic differential on zero surfaces is proposed, which is based on the global algebraic representation of meromorphic. Our experimental results demonstrate the efficiency and efficacy of the algorithm. This opens up a direction for quad-mesh generation using algebraic geometric approach.
We present a detailed comparison of two types of sequence to sequence models trained to conduct a compositional task. The models are architecturally identical at inference time, but differ in the way that they are trained: our baseline model is train ed with a task-success signal only, while the other model receives additional supervision on its attention mechanism (Attentive Guidance), which has shown to be an effective method for encouraging more compositional solutions (Hupkes et al.,2019). We first confirm that the models with attentive guidance indeed infer more compositional solutions than the baseline, by training them on the lookup table task presented by Liv{s}ka et al. (2019). We then do an in-depth analysis of the structural differences between the two model types, focusing in particular on the organisation of the parameter space and the hidden layer activations and find noticeable differences in both these aspects. Guided networks focus more on the components of the input rather than the sequence as a whole and develop small functional groups of neurons with specific purposes that use their gates more selectively. Results from parameter heat maps, component swapping and graph analysis also indicate that guided networks exhibit a more modular structure with a small number of specialized, strongly connected neurons.
245 - Na Lei , Yang Guo , Dongsheng An 2019
This work builds the connection between the regularity theory of optimal transportation map, Monge-Amp`{e}re equation and GANs, which gives a theoretic understanding of the major drawbacks of GANs: convergence difficulty and mode collapse. Accordin g to the regularity theory of Monge-Amp`{e}re equation, if the support of the target measure is disconnected or just non-convex, the optimal transportation mapping is discontinuous. General DNNs can only approximate continuous mappings. This intrinsic conflict leads to the convergence difficulty and mode collapse in GANs. We test our hypothesis that the supports of real data distribution are in general non-convex, therefore the discontinuity is unavoidable using an Autoencoder combined with discrete optimal transportation map (AE-OT framework) on the CelebA data set. The testing result is positive. Furthermore, we propose to approximate the continuous Brenier potential directly based on discrete Brenier theory to tackle mode collapse. Comparing with existing method, this method is more accurate and effective.
88 - Huidong Liu , Yang Guo , Na Lei 2018
Variational Auto-Encoders enforce their learned intermediate latent-space data distribution to be a simple distribution, such as an isotropic Gaussian. However, this causes the posterior collapse problem and loses manifold structure which can be impo rtant for datasets such as facial images. A GAN can transform a simple distribution to a latent-space data distribution and thus preserve the manifold structure, but optimizing a GAN involves solving a Min-Max optimization problem, which is difficult and not well understood so far. Therefore, we propose a GAN-like method to transform a simple distribution to a data distribution in the latent space by solving only a minimization problem. This minimization problem comes from training a discriminator between a simple distribution and a latent-space data distribution. Then, we can explicitly formulate an Optimal Transport (OT) problem that computes the desired mapping between the two distributions. This means that we can transform a distribution without solving the difficult Min-Max optimization problem. Experimental results on an eight-Gaussian dataset show that the proposed OT can handle multi-cluster distributions. Results on the MNIST and the CelebA datasets validate the effectiveness of the proposed method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا