ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - N. Plonka , C.J. Jia , Y. Wang 2015
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground-state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study th e influence of these interactions on superconductivity by including nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix formalism, we explore the effects of a non-magnetic impurity on the local density of states in Fe-based compounds. We show that scanning tunneling spectroscopy (STS) has very s pecific anisotropic signatures that track the evolution of orbital splitting (OS) and antiferromagnetic gaps. Both anisotropies exhibit two patterns that split in energy with decreasing temperature, but for OS these two patterns map onto each other under 90 degree rotation. STS experiments that observe these signatures should expose the underlying magnetic and orbital order as a function of temperature across various phase transitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا