ﻻ يوجد ملخص باللغة العربية
Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix formalism, we explore the effects of a non-magnetic impurity on the local density of states in Fe-based compounds. We show that scanning tunneling spectroscopy (STS) has very specific anisotropic signatures that track the evolution of orbital splitting (OS) and antiferromagnetic gaps. Both anisotropies exhibit two patterns that split in energy with decreasing temperature, but for OS these two patterns map onto each other under 90 degree rotation. STS experiments that observe these signatures should expose the underlying magnetic and orbital order as a function of temperature across various phase transitions.
A growing list of experiments show orthorhombic electronic anisotropy in the iron pnictides, in some cases at temperatures well above the spin density wave transition. These experiments include neutron scattering, resistivity and magnetoresistance me
We examine the optical conductivity in antiferromagnetic (AFM) iron pnictides by mean-field calculation in a five-band Hubbard model. The calculated spectra are well consistent with the in-plane anisotropy observed in the measurements, where the opti
The origin of the nematic state is an important puzzle to be solved in iron pnictides. Iron superconductors are multiorbital systems and these orbitals play an important role at low energy. The singular $C_4$ symmetry of $d_{zx}$ and $d_{yz}$ orbital
X-ray emission and absorption spectroscopies are jointly used as fast probes to determine the evolution as a function of doping of the fluctuating local magnetic moments in K- and Cr- hole-doped BaFe2As2. An increase in the local moment with hole-dop
The role of Co substitution in the low-energy electronic structure of Ca(Fe$_{0.944}$Co$_{0.056}$)$_2$As$_2$ is investigated by resonant photoemission spectroscopy and density functional theory. The Co 3d-state center-of-mass is observed at 250 meV h