ﻻ يوجد ملخص باللغة العربية
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground-state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
We employ the weak-coupling renormalization group approach to study unconventional superconducting phases emerging in the extended, repulsive Hubbard model on paradigmatic two-dimensional lattices. Repulsive interactions usually lead to higher-angula
Motivated by the recent discovery of the anomalously near-neighbor attraction arising from the electron-phonon coupling, we quantitatively investigate the enhancing effects of this additional attractive channel on the $d$-wave SC based on dynamic clu
We present a study of the attractive Hubbard model based on the dynamical mean field theory (DMFT) combined with the numerical renormalization group (NRG). For this study the NRG method is extended to deal with self-consistent solutions of effective
Interplay between antiferromagnetism and superconductivity is studied by using the 3-dimensional nearly half-filled Hubbard model with anisotropic transfer matrices $t_{rm z}$ and $t_{perp}$. The phase diagrams are calculated for varying values of th
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$