ترغب بنشر مسار تعليمي؟ اضغط هنا

Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can a ffect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the standard planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.
Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e $sim$ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.
We have developed a comprehensive methodology for calculating the circumbinary HZ in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at t he top of the atmosphere of an Earth-like planet, and use the Suns HZ to calculate the locations of the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Keplers currently known circumbinary planetary system and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.
We present a model-independent technique for calculating the time of mid-transits. This technique, named barycenter method, uses the light-curves symmetry to determine the transit timing by calculating the transit light-curve barycenter. Unlike the o ther methods of calculating mid-transit timing, this technique does not depend on the parameters of the system and central star. We demonstrate the capabilities of the barycenter method by applying this technique to some known transiting systems including several emph{Kepler} confirmed planets. Results indicate that for complete and symmetric transit lightcurves, the barycenter method achieves the same precision as other techniques, but with fewer assumptions and much faster. Among the transiting systems studied with the barycenter method, we focus in particular on LHS 6343C, a brown dwarf that transits a member of an M+M binary system, LHS 6343AB. We present the results of our analysis, which can be used to set an upper limit on the period and mass of a possible second small perturber.
100 - N. Haghighipour , D. Jewitt 2008
An interesting feature of the giant planets of our solar system is the existence of regions around these objects where no irregular satellites are observed. Surveys have shown that, around Jupiter, such a region extends from the outermost regular sat ellite Callisto, to the vicinity of Themisto, the innermost irregular satellite. To understand the reason for the existence of such a satellite-void region, we have studied the dynamical evolution of Jovian irregulars by numerically integrating the orbits of several hundred test particles, distributed in a region between 30 and 80 Jupiter-radii, for different values of their semimajor axes, orbital eccentricities, and inclinations. As expected, our simulations indicate that objects in or close to the influence zones of the Galilean satellites become unstable because of interactions with Ganymede and Callisto. However, these perturbations cannot account for the lack of irregular satellites in the entire region between Callisto and Themisto. It is suggested that at distances between 60 and 80 Jupiter-radii, Ganymede and Callisto may have long-term perturbative effects, which may require the integrations to be extended to times much longer than 10 Myr. The interactions of irregular satellites with protosatellites of Jupiter at the time of the formation of Jovian regulars may also be a destabilizing mechanism in this region. We present the results of our numerical simulations and discuss their applicability to similar satellite void-regions around other giant planets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا