ﻻ يوجد ملخص باللغة العربية
An interesting feature of the giant planets of our solar system is the existence of regions around these objects where no irregular satellites are observed. Surveys have shown that, around Jupiter, such a region extends from the outermost regular satellite Callisto, to the vicinity of Themisto, the innermost irregular satellite. To understand the reason for the existence of such a satellite-void region, we have studied the dynamical evolution of Jovian irregulars by numerically integrating the orbits of several hundred test particles, distributed in a region between 30 and 80 Jupiter-radii, for different values of their semimajor axes, orbital eccentricities, and inclinations. As expected, our simulations indicate that objects in or close to the influence zones of the Galilean satellites become unstable because of interactions with Ganymede and Callisto. However, these perturbations cannot account for the lack of irregular satellites in the entire region between Callisto and Themisto. It is suggested that at distances between 60 and 80 Jupiter-radii, Ganymede and Callisto may have long-term perturbative effects, which may require the integrations to be extended to times much longer than 10 Myr. The interactions of irregular satellites with protosatellites of Jupiter at the time of the formation of Jovian regulars may also be a destabilizing mechanism in this region. We present the results of our numerical simulations and discuss their applicability to similar satellite void-regions around other giant planets.
The origins of irregular satellites of the giant planets are an important piece of the giant puzzle that is the theory of Solar System formation. It is well established that they are not in situ formation objects, around the planet, as are believed t
We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE dataset. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and pr
We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C, P and
It is widely recognized that the irregular satellites of the giant planets were captured from initially heliocentric orbits. However, the mechanism of capture and the source region from which they were captured both remain unknown. We present an opti
Constructing dynamical maps from the filtered output of numerical integrations, we analyze the structure of the $ u_odot$ secular resonance for fictitious irregular satellites in retrograde orbits. This commensurability is associated to the secular a