ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying the true theory of dark matter depends crucially on accurately characterizing interactions of dark matter (DM) with other species. In the context of DM direct detection, we present a study of the prospects for correctly identifying the lo w-energy effective DM-nucleus scattering operators connected to UV-complete models of DM-quark interactions. We take a census of plausible UV-complete interaction models with different low-energy leading-order DM-nuclear responses. For each model (corresponding to different spin-, momentum-, and velocity-dependent responses), we create a large number of realizations of recoil-energy spectra, and use Bayesian methods to investigate the probability that experiments will be able to select the correct scattering model within a broad set of competing scattering hypotheses. We conclude that agnostic analysis of a strong signal (such as Generation-2 would see if cross sections are just below the current limits) seen on xenon and germanium experiments is likely to correctly identify momentum dependence of the dominant response, ruling out models with either heavy or light mediators, and enabling downselection of allowed models. However, a unique determination of the correct UV completion will critically depend on the availability of measurements from a wider variety of nuclear targets, including iodine or fluorine. We investigate how model-selection prospects depend on the energy window available for the analysis. In addition, we discuss accuracy of the DM particle mass determination under a wide variety of scattering models, and investigate impact of the specific types of particle-physics uncertainties on prospects for model selection.
We examine the effect of nuclear response functions, as laid out in [Fitzpatrick et al, arXiv:1203.3542], on dark matter (DM) direct detection in the context of well-motivated UV completions, including electric and magnetic dipoles, anapole, spin-orb it, and pseudoscalar-mediated DM. Together, these encompass five of the six nuclear responses extracted from the non-relativistic effective theory of [Fitzpatrick et al, arXiv:1203.3542] (with the sixth difficult to UV complete), with two of the six combinations corresponding to standard spin-independent and -dependent responses. For constraints from existing direct detection experiments, we find that only the COUPP constraint, due to its heavy iodine target with large angular momentum and an unpaired spin, and its large energy range sensitivity, is substantially modified by the new responses compared to what would be inferred using the standard form factors to model the energy dependence of the response. For heavy targets such as xenon and germanium, the behavior of the new nuclear responses as recoil energy increases can be substantially different than that of the standard responses, but this has almost no impact on the constraints derived from experiments such as LUX, XENON100 and CDMS since the maximum nuclear recoil energy detected in these experiments is relatively low. We simulate mock data for 80 and 250 GeV DM candidates utilizing the new nuclear responses to highlight how they might affect a putative signal, and find the new responses are most important for momentum-suppressed interactions such as the magnetic dipole or pseudoscalar-mediated interaction when the target is relatively heavy (such as xenon and iodine).
We consider the implications of low-energy precision tests of parity violation on t-channel mediator models explaining the top AFB excess measured by CDF and D0. Flavor-violating u-t or d-t couplings of new scalar or vector mediators generate at one- loop an anomalous contribution to the nuclear weak charge. As a result, atomic parity violation constraints disfavor at >3 sigma t-channel models that give rise to a greater than 20% AFB at the parton level for M_tt > 450 GeV while not producing too large a top cross-section. Even stronger constraints are expected through future measurements of the proton weak charge by the Q-Weak experiment.
We carry out a comprehensive analysis of models for top A_{FB} at CDF in light of new top data arriving from the LHC. We begin with a careful Tevatron analysis, considering in general which sets of effective vertices give rise to a large forward-back ward asymmetry while suppressing the contribution to the total t tbar cross-section. We show on general grounds that scalar models struggle to produce sufficient asymmetries consistent with CDF observations, while vector models can produce a large asymmetry with a less significant tension in the total cross-section and $tbar{t}$ invariant mass distribution at the Tevatron. We examine the essential observables of these models for top physics at LHC7 with 1 fb^{-1} of data, including the total cross-section, invariant mass distribution and number of additional jets in t tbar events. In the case of t-channel mediators, the LHC total cross-section places a strong constraint on light mediators, while the Tevatron invariant mass distributions place strong constraints on heavy mediators that are able to produce the asymmetry. Heavy axigluons are becoming increasingly squeezed by LHC7 t tbar and dijet resonance searches. We conclude that LHC7 top analyses are rapidly closing the window for viable models of the CDF top A_{FB}.
CDF has observed a top forward-backward asymmetry discrepant with the Standard Model prediction at 3.4 sigma. We analyze models that could generate the asymmetry, including flavor-violating Ws, horizontal Z_Hs, triplet and sextet diquarks, and axiglu ons. We consider the detailed predictions of these models for the invariant mass and rapidity distributions of the asymmetry at the parton level, comparing against the unfolded parton-level CDF results. While all models can reproduce the asymmetry with the appropriate choice of mass and couplings, it appears at first examination that the extracted parton-level invariant mass distribution for all models are in conflict with Tevatron observations. We show on closer examination, however, that t tbar events in Z_H and W models have considerably lower selection efficiencies in high invariant mass bins as compared to the Standard Model, so that W, Z_H, and axigluon models can generate the observed asymmetry while being consistent with the total cross-section and invariant mass spectrum. Triplet and sextet models have greater difficulty producing the observed asymmetry while remaining consistent with the total cross-section and invariant mass distribution. To more directly match the models and the CDF results, we proceed to decay and reconstruct the tops, comparing our results against the raw CDF asymmetry and invariant mass distributions. We find that the models that successfully generate the corrected CDF asymmetry at the parton level reproduce very well the more finely binned uncorrected asymmetry. Finally, we discuss the early LHC reach for discovery of these models, based on our previous analysis [arXiv:1102.0018].
We study new top flavor violating resonances that are singly produced in association with a top at the LHC. Such top flavor violating states could be responsible for the Tevatron top forward-backward asymmetry. Since top flavor violating states can d irectly decay to a top (or anti-top) and jet, and are produced in conjunction with another (oppositely charged) top, the direct signature of such states is a t j (or tbar j) resonance in t tbar j events. In general, these states can be very light and have O(1) couplings to the top sector so that they are copiously produced. We present a search strategy and estimate the discovery potential at the early LHC by implementing the strategy on simulated data. For example, with 1 fb^-1 at 7 TeV, we estimate that a W coupling to d_R tbar_R can be constrained at the 3 sigma level for g_R = 1 and m_W = 200 GeV, weakening to g_R = 1.75 for m_W = 600 GeV. With the search we advocate here, a bound at a similar level could be obtained for top flavor violating Zs, as well as triplet and sextet diquarks.
We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form , inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Walds no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the in-in formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.
We investigate the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm vector aether fields. Models with generic kinetic terms are plagued either by ghosts or by tachyons, and are therefore physically unacceptable. There are precisely three kinetic terms that are not manifestly unstable: a sigma model $(partial_mu A_ u)2$, the Maxwell Lagrangian $F_{mu u}F^{mu u}$, and a scalar Lagrangian $(partial_mu A^mu)2$. The timelike sigma-model case is well-defined and stable when the vector norm is fixed by a constraint; however, when it is determined by minimizing a potential there is necessarily a tachyonic ghost, and therefore an instability. In the Maxwell and scalar cases, the Hamiltonian is unbounded below, but at the level of perturbation theory there are fewer degrees of freedom and the models are stable. However, in these two theories there are obstacles to smooth evolution for certain choices of initial data.
Theories of low-energy Lorentz violation by a fixed-norm aether vector field with two-derivative kinetic terms have a globally bounded Hamiltonian and are perturbatively stable only if the vector is timelike and the kinetic term in the action takes t he form of a sigma model. Here we investigate the phenomenological properties of this theory. We first consider the propagation of modes in the presence of gravity, and show that there is a unique choice of curvature coupling that leads to a theory without superluminal modes. Experimental constraints on this theory come from a number of sources, and we examine bounds in a two-dimensional parameter space. We then consider the cosmological evolution of the aether, arguing that the vector will naturally evolve to be orthogonal to constant-density hypersurfaces in a Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution in the presence of an extra compact dimension of space, concluding that a vector can maintain a constant projection along the extra dimension in an expanding universe only when the expansion is exponential.
We study the classical stability of an anisotropic space-time seeded by a spacelike, fixed norm, dynamical vector field in a vacuum-energy-dominated inflationary era. It serves as a model for breaking isotropy during the inflationary era. We find tha t, for a range of parameters, the linear differential equations for small perturbations about the background do not have a growing mode. We also examine the energy of fluctuations about this background in flat-space. If the kinetic terms for the vector field do not take the form of a field strength tensor squared then there is a negative energy mode and the background is unstable. For the case where the kinetic term is of the form of a field strength tensor squared we show that perturbations about the background have positive energy at lowest order.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا