ترغب بنشر مسار تعليمي؟ اضغط هنا

Sigma-Model Aether

169   0   0.0 ( 0 )
 نشر من قبل Timothy Dulaney
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theories of low-energy Lorentz violation by a fixed-norm aether vector field with two-derivative kinetic terms have a globally bounded Hamiltonian and are perturbatively stable only if the vector is timelike and the kinetic term in the action takes the form of a sigma model. Here we investigate the phenomenological properties of this theory. We first consider the propagation of modes in the presence of gravity, and show that there is a unique choice of curvature coupling that leads to a theory without superluminal modes. Experimental constraints on this theory come from a number of sources, and we examine bounds in a two-dimensional parameter space. We then consider the cosmological evolution of the aether, arguing that the vector will naturally evolve to be orthogonal to constant-density hypersurfaces in a Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution in the presence of an extra compact dimension of space, concluding that a vector can maintain a constant projection along the extra dimension in an expanding universe only when the expansion is exponential.

قيم البحث

اقرأ أيضاً

We propose a new way to hide extra dimensions without invoking branes, based on Lorentz-violating tensor fields with expectation values along the extra directions. We investigate the case of a single vector ``aether field on a compact circle. In such a background, interactions of other fields with the aether can lead to modified dispersion relations, increasing the mass of the Kaluza-Klein excitations. The mass scale characterizing each Kaluza-Klein tower can be chosen independently for each species of scalar, fermion, or gauge boson. No small-scale deviations from the inverse square law for gravity are predicted, although light graviton modes may exist.
We study the entanglement wedge cross-section (EWCS) in holographic Aether gravity theory, a gravity theory with Lorentz symmetry breaking meanwhile keeping the general covariance intact. We find that only a limited parameter space is allowed to obta in a black brane with positive Hawking temperature. Subject to these allowed parameter regions, we find that the EWCS could exhibit non-monotonic behaviors with system parameters. Meanwhile, the holographic entanglement entropy (HEE), and the corresponding mutual information (MI), can only exhibit monotonic behaviors. These phenomena suggest that the EWCS could capture much more rich content of the entanglement than that of the HEE and the MI. The role of the Lorentz violation in determining the behaviors of quantum information-related quantities is also analyzed.
200 - M. Adak , D. Grumiller 2007
We present a Poisson-sigma model describing general 2D dilaton gravity with non-metricity, torsion and curvature. It involves three arbitrary functions of the dilaton field, two of which are well-known from metric compatible theories, while the third one characterizes the local strength of non-metricity. As an example we show that alpha corrections in 2D string theory can generate (target space) non-metricity.
We explore solutions of six dimensional gravity coupled to a non-linear sigma model, in the presence of co-dimension two branes. We investigate the compactifications induced by a spherical scalar manifold and analyze the conditions under which they a re of finite volume and singularity free. We discuss the issue of single-valuedness of the scalar fields and provide some special embedding of the scalar manifold to the internal space which solves this problem. These brane solutions furnish some self-tuning features, however they do not provide a satisfactory explanation of the vanishing of the effective four dimensional cosmological constant. We discuss the properties of this model in relation with the self-tuning example based on a hyperbolic sigma model.
94 - B. Harms , A. Stern 2016
We obtain numerical solutions for rotating topological solitons of the nonlinear $sigma$-model in three-dimensional Anti-de Sitter space. Two types of solutions, $i)$ and $ii)$, are found. The $sigma$-model fields are everywhere well defined for both types of solutions, but they differ in their space-time domains. Any time slice of the space-time for the type $i)$ solution has a causal singularity, despite the fact that all scalars constructed the curvature tensor are bounded functions. No evidence of a horizon is seen for any of the solutions, and therefore the type $i)$ solutions have naked singularities. On the other hand, the space-time domain, along with the fields, for the type $ii)$ solutions are singularity free. Multiple families of solutions exhibiting bifurcation phenomena are found for this case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا