ترغب بنشر مسار تعليمي؟ اضغط هنا

Tevatron Top $A_{FB}$ Versus LHC Top Physics

268   0   0.0 ( 0 )
 نشر من قبل Moira Gresham
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We carry out a comprehensive analysis of models for top A_{FB} at CDF in light of new top data arriving from the LHC. We begin with a careful Tevatron analysis, considering in general which sets of effective vertices give rise to a large forward-backward asymmetry while suppressing the contribution to the total t tbar cross-section. We show on general grounds that scalar models struggle to produce sufficient asymmetries consistent with CDF observations, while vector models can produce a large asymmetry with a less significant tension in the total cross-section and $tbar{t}$ invariant mass distribution at the Tevatron. We examine the essential observables of these models for top physics at LHC7 with 1 fb^{-1} of data, including the total cross-section, invariant mass distribution and number of additional jets in t tbar events. In the case of t-channel mediators, the LHC total cross-section places a strong constraint on light mediators, while the Tevatron invariant mass distributions place strong constraints on heavy mediators that are able to produce the asymmetry. Heavy axigluons are becoming increasingly squeezed by LHC7 t tbar and dijet resonance searches. We conclude that LHC7 top analyses are rapidly closing the window for viable models of the CDF top A_{FB}.



قيم البحث

اقرأ أيضاً

401 - C.E.Gerber , P.Murat 2007
The top quark and electroweak bosons (W and Z) represent the most massive fundamental particles yet discovered, and as such refer directly to the Standard Models greatest remaining mystery: the mechanism by which all particles gained mass. This repor t summarizes the work done within the top-ew group of the Tevatron-for-LHC workshop. It represents a collection of both Tevatron results, and LHC predictions. The hope is that by considering and comparing both machines, the LHC program can be improved and aided by knowledge from the Tevatron, and that particle physics as a whole can be enriched. The report includes measurements of the top quark mass, searches for single top quark production, and physics of the electroweak bosons at hadron colliders.
CDF has observed a top forward-backward asymmetry discrepant with the Standard Model prediction at 3.4 sigma. We analyze models that could generate the asymmetry, including flavor-violating Ws, horizontal Z_Hs, triplet and sextet diquarks, and axiglu ons. We consider the detailed predictions of these models for the invariant mass and rapidity distributions of the asymmetry at the parton level, comparing against the unfolded parton-level CDF results. While all models can reproduce the asymmetry with the appropriate choice of mass and couplings, it appears at first examination that the extracted parton-level invariant mass distribution for all models are in conflict with Tevatron observations. We show on closer examination, however, that t tbar events in Z_H and W models have considerably lower selection efficiencies in high invariant mass bins as compared to the Standard Model, so that W, Z_H, and axigluon models can generate the observed asymmetry while being consistent with the total cross-section and invariant mass spectrum. Triplet and sextet models have greater difficulty producing the observed asymmetry while remaining consistent with the total cross-section and invariant mass distribution. To more directly match the models and the CDF results, we proceed to decay and reconstruct the tops, comparing our results against the raw CDF asymmetry and invariant mass distributions. We find that the models that successfully generate the corrected CDF asymmetry at the parton level reproduce very well the more finely binned uncorrected asymmetry. Finally, we discuss the early LHC reach for discovery of these models, based on our previous analysis [arXiv:1102.0018].
We explore the possibility that the right-handed top quark is composite. We examine the consequences that compositeness would have on $t bar{t}$ production at the Tevatron, and derive a weak constraint on the scale of compositeness of order a few hun dred GeV from the $t bar{t}$ inclusive cross section. More detailed studies of differential properties of $t bar{t}$ production could potentially improve this limit. We find that a composite top can result in an enhancement of the $t bar{t} t bar{t}$ production rate at the LHC (of as much as $10^3$ compared to the Standatd Model four top rate). We explore observables which allow us to extract the four top rate from the backgrounds, and show that the LHC can either discover or constrain top compositeness for wide ranges of parameter space.
164 - Jorgen Dhondt 2007
The Large Hadron Collider (LHC) is expected to provide proton-proton collisions at a centre-of-mass energy of 14 TeV, yielding millions of of top quark events. The top-physics potential of the two general purpose experiments, ATLAS and CMS, is discus sed according to state-of-the-art simulation of both physics and detectors. An overview is given of the most important results with emphasis on the expected improvements in our understanding of physics connected to the top quark.
95 - D. Chakraborty 2003
We present an overview of Top Quark Physics - from what has been learned so far at the Tevatron, to the searches that lie ahead at present and future colliders. We summarize the richness of the measurements and discuss their possible impact on our un derstanding of the Standard Model by pointing out their key elements and limitations. When possible, we discuss how the top quark may provide a connection to new or unexpected physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا