ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient devices for light harvesting and photon sensing are fundamental building blocks of basic energy science and many essential technologies. Recent efforts have turned to biomimicry to design the next generation of light-capturing devices, part ially fueled by an appreciation of the fantastic efficiency of the initial stages of natural photosynthetic systems at capturing photons. In such systems extended excitonic states are thought to play a fundamental functional role, inducing cooperative coherent effects, such as superabsorption of light and supertransfer of photoexcitations. Inspired by this observation, we design an artificial light-harvesting and photodetection device that maximally harnesses cooperative effects to enhance efficiency. The design relies on separating absorption and transfer processes (energetically and spatially) in order to overcome the fundamental obstacle to exploiting cooperative effects to enhance light capture: the enhanced emission processes that accompany superabsorption. This engineered separation of processes greatly improves the efficiency and the scalability of the system.
Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers. In this work, we present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits . Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state. Given a task and a device model that captures information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost function over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quantum device, for applications including quantum state overlap, quantum Fourier transform, and W-state preparation.
We show that the cost of strong simulation of quantum circuits using $t$ $T$ gate magic states exhibits non-trivial reductions on its upper bound for $t=1$, $t=2$, $t=3$, and $t=6$ with odd-prime-qudits. This agrees with previous numerical bounds fou nd for qubits. We define simulation cost by the number of terms that require Gaussian elimination of a $t times t$ matrix and so capture the cost of simulation methods that proceed by computing stabilizer inner products or evaluating quadratic Gauss sums. Prior numerical searchs for qubits were unable to converge beyond $t=7$. We effectively increase the space searched for these non-trivial reductions by $>10^{10^4}$ and extend the bounds to $t=14$ for qutrits. This is accomplished by using the Wigner-Weyl-Moyal formalism to algebraically find bounds instead of relying on numerics. We find a new reduction in the upper bound from the $12$-qutrit magic state of ${3^{sim 0.469t}}$, which improves on the bound obtained from the $6$-qutrit magic state of ${3^{sim 0.482t}}$.
A number of applications in basic science and technology would benefit from high fidelity photon number resolving photodetectors. While some recent experimental progress has been made in this direction, the requirements for true photon number resolut ion are stringent, and no design currently exists that achieves this goal. Here we employ techniques from fundamental quantum optics to demonstrate that detectors composed of subwavelength elements interacting collectively with the photon field can achieve high-performance photon number resolution. We propose a new design that simultaneously achieves photon number resolution, high efficiency, low jitter, low dark counts, and high count rate. We discuss specific systems that satisfy the design requirements, pointing to the important role of nanoscale device elements.
Crosstalk occurs in most quantum computing systems with more than one qubit. It can cause a variety of correlated and nonlocal crosstalk errors that can be especially harmful to fault-tolerant quantum error correction, which generally relies on error s being local and relatively predictable. Mitigating crosstalk errors requires understanding, modeling, and detecting them. In this paper, we introduce a comprehensive framework for crosstalk errors and a protocol for detecting and localizing them. We give a rigorous definition of crosstalk errors that captures a wide range of disparate physical phenomena that have been called crosstalk, and a concrete model for crosstalk-free quantum processors. Errors that violate this model are crosstalk errors. Next, we give an equivalent but purely operational (model-independent) definition of crosstalk errors. Using this definition, we construct a protocol for detecting a large class of crosstalk errors in a multi-qubit processor by finding conditional dependencies between observed experimental probabilities. It is highly efficient, in the sense that the number of unique experiments required scales at most cubically, and very often quadratically, with the number of qubits. We demonstrate the protocol using simulations of 2-qubit and 6-qubit processors.
Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific d isciplines, and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance, and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations, and includes a mathematical definition of ideal photodetector performance. The framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.
Building on recent work by Gammelmark et al. [Phys. Rev. Lett. 111, 160401 (2013)] we develop a formalism for prediction and retrodiction of Gaussian quantum systems undergoing continuous measurements. We apply the resulting formalism to study the ad vantage of incorporating a full measurement record and retrodiction for impulse-like force detection and accelerometry.
Single-photon detectors have achieved impressive performance, and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated p erturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to tradeoffs between detector metrics, and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a perfect photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next generation detectors.
We demonstrate the existence of a finite temperature threshold for a 1D stabilizer code under an error correcting protocol that requires only a fraction of the syndrome measurements. Below the threshold temperature, encoded states have exponentially long lifetimes, as demonstrated by numerical and analytical arguments. We sketch how this algorithm generalizes to higher dimensional stabilizer codes with string-like excitations, like the toric code.
The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new p ractical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا