ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Limits to Single-Photon Detection Determined by Quantum Coherence and Backaction

76   0   0.0 ( 0 )
 نشر من قبل Francois Leonard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-photon detectors have achieved impressive performance, and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to tradeoffs between detector metrics, and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a perfect photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next generation detectors.



قيم البحث

اقرأ أيضاً

Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse these sources in the presence of multi-photon processes for the first time. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We devise a new figure of merit, the quantum utility (QMU), enabling direct comparison and optimisation of single photon sources.
We present experimental results relative to superluminal propagation based on a single photon traversing an optical system, called 4f-system, which acts singularly on the photons spectral component phases. A single photon is created by a CW laser lig ht down{conversion process. The introduction of a linear spectral phase function will lead to the shift of the photon peak far beyond the coherence length of the photon itself (an apparent superluminal propagation of the photon). Superluminal group velocity detection is done by interferometric measurement of the temporal shifted photon with its correlated untouched reference. The observed superluminal photon propagation complies with causality. The operation of the optical system allows to enlighten the origin of the apparent superluminal photon velocity. The experiment foresees a superluminal effect with single photon wavepackets.
Coherent generation of indistinguishable single photons is crucial for many quantum communication and processing protocols. Solid-state realizations of two-level atomic transitions or three-level spin-$Lambda$ systems offer significant advantages ove r their atomic counterparts for this purpose, albeit decoherence can arise due to environmental couplings. One popular approach to mitigate dephasing is to operate in the weak excitation limit, where excited state population is minimal and coherently scattered photons dominate over incoherent emission. Here we probe the coherence of photons produced using two-level and spin-$Lambda$ solid-state systems. We observe that the coupling of the atomic-like transitions to the vibronic transitions of the crystal lattice is independent of driving strength and detuning. We apply a polaron master equation to capture the non-Markovian dynamics of the ground state vibrational manifolds. These results provide insight into the fundamental limitations for photon coherence from solid-state quantum emitters, with the consequence that deterministic single-shot quantum protocols are impossible and inherently probabilistic approaches must be embraced.
We present a joint theoretical and experimental characterization of thermo-refractive noise in high quality factor ($Q$), small mode volume ($V$) optical microcavities. Analogous to well-studied stability limits imposed by Brownian motion in macrosco pic Fabry-Perot resonators, microcavity thermo-refractive noise gives rise to a mode volume-dependent maximum effective quality factor. State-of-the-art fabricated microcavities are found to be within one order of magnitude of this bound. We confirm the assumptions of our theory by measuring the noise spectrum of high-$Q/V$ silicon photonic crystal cavities and apply our results to estimate the optimal performance of proposed room temperature, all-optical qubits using cavity-enhanced bulk material nonlinearities.
We show that there are shape-independent upper bounds to the extinction cross section per unit volume of randomly oriented nanoparticles, given only material permittivity. Underlying the limits are restrictive sum rules that constrain the distributio n of quasistatic eigenvalues. Surprisingly, optimally-designed spheroids, with only a single quasistatic degree of freedom, reach the upper bounds for four permittivity values. Away from these permittivities, we demonstrate computationally-optimized structures that surpass spheroids and approach the fundamental limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا