ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, V. Alexandrov proposed an intriguing sufficient condition for rigidity, which we will call transverse rigidity. We show that transverse rigidity is actually equivalent to the known sufficient condition for rigidity called prestress stabilit y. Indeed this leads to a novel interpretation of the prestress condition.
A challenge in designing self-assembling building blocks is to ensure the target state is both thermodynamically stable and kinetically accessible. These two objectives are known to be typically in competition, but it is not known how to simultaneous ly optimize them. We consider this problem through the lens of multi-objective optimization theory: we develop a genetic algorithm to compute the Pareto fronts characterizing the tradeoff between equilibrium probability and folding rate, for a model system of small polymers of colloids with tunable short-ranged interaction energies. We use a coarse-grained model for the particles dynamics that allows us to efficiently search over parameters, for systems small enough to be enumerated. For most target states there is a tradeoff when the number of types of particles is small, with medium-weak bonds favouring fast folding, and strong bonds favouring high equilibrium probability. The tradeoff disappears when the number of particle types reaches a value $m_*$, that is usually much less than the total number of particles. This general approach of computing Pareto fronts allows one to identify the minimum number of design parameters to avoid a thermodynamic-kinetic tradeoff. However, we argue, by contrasting our coarse-grained models predictions with those of Brownian dynamics simulations, that particles with short-ranged isotropic interactions should generically have a tradeoff, and avoiding it in larger systems will require orientation-dependent interactions.
Many problems in materials science and biology involve particles interacting with strong, short-ranged bonds, that can break and form on experimental timescales. Treating such bonds as constraints can significantly speed up sampling their equilibrium distribution, and there are several methods to sample probability distributions subject to fixed constraints. We introduce a Monte Carlo method to handle the case when constraints can break and form. More generally, the method samples a probability distribution on a stratification: a collection of manifolds of different dimensions, where the lower-dimensional manifolds lie on the boundaries of the higher-dimensional manifolds. We show several applications of the method in polymer physics, self-assembly of colloids, and volume calculation in high dimensions.
We study the energy landscapes of particles with short-range attractive interactions as the range of the interactions increases. Starting with the set of local minima for $6leq Nleq12$ hard spheres that are sticky, i.e. they interact only when their surfaces are exactly in contact, we use numerical continuation to evolve the local minima (clusters) as the range of the potential increases, using both the Lennard-Jones and Morse families of interaction potentials. As the range increases, clusters merge, until at long ranges only one or two clusters are left. We compare clusters obtained by continuation with different potentials and find that for short and medium ranges, up to about 30% of particle diameter, the continued clusters are nearly identical, both within and across families of potentials. For longer ranges the clusters vary significantly, with more variation between families of potentials than within a family. We analyze the mechanisms behind the merge events, and find that most rearrangements occur when a pair of non-bonded particles comes within the range of the potential. An exception occurs for nonharmonic clusters, those that have a zero eigenvalue in their Hessian, which undergo a more global rearrangement.
We extend the mathematical theory of rigidity of frameworks (graphs embedded in $d$-dimensional space) to consider nonlocal rigidity and flexibility properties. We provide conditions on a framework under which (I) as the framework flexes continuously it must remain inside a small ball, a property we call almost-rigidity; (II) any other framework with the same edge lengths must lie outside a much larger ball; (III) if the framework deforms by some given amount, its edge lengths change by a minimum amount; (IV) there is a nearby framework that is prestress stable, and thus rigid. The conditions can be tested efficiently using semidefinite programming. The test is a slight extension of the test for prestress stability of a framework, and gives analytic expressions for the radii of the balls and the edge length changes. Examples illustrate how the theory may be applied in practice, and we provide an algorithm to test for rigidity or almost-rigidity. We briefly discuss how the theory may be applied to tensegrities.
Sticky Brownian motion is the simplest example of a diffusion process that can spend finite time both in the interior of a domain and on its boundary. It arises in various applications such as in biology, materials science, and finance. This article spotlights the unusual behavior of sticky Brownian motions from the perspective of applied mathematics, and provides tools to efficiently simulate them. We show that a sticky Brownian motion arises naturally for a particle diffusing on $mathbb{R}_+$ with a strong, short-ranged potential energy near the origin. This is a limit that accurately models mesoscale particles, those with diameters $approx 100$nm-$10mu$m, which form the building blocks for many common materials. We introduce a simple and intuitive sticky random walk to simulate sticky Brownian motion, that also gives insight into its unusual properties. In parameter regimes of practical interest, we show this sticky random walk is two to five orders of magnitude faster than alternative methods to simulate a sticky Brownian motion. We outline possible steps to extend this method towards simulating multi-dimensional sticky diffusions.
We present a theoretical and computational framework to compute the symmetry number of a flexible sphere cluster in $mathbb{R}^3$, using a definition of symmetry that arises naturally when calculating the equilibrium probability of a cluster of spher es in the sticky-sphere limit. We define the sticky symmetry group of the cluster as the set of permutations and
We construct a theoretical model for the dynamics of a microscale colloidal particle, modeled as an interval, moving horizontally on a DNA-coated surface, modelled as a line coated with springs that can stick to the interval. Averaging over the fast DNA dynamics leads to an evolution equation for the particle in isolation, which contains both friction and diffusion. The DNA-induced friction coefficient depends on the physical properties of the DNA, and substituting parameter values typical of a 1$mu$m colloid coated densely with weakly interacting DNA gives a coefficient about 100 times larger than the corresponding coefficient of hydrodynamic friction. We use a mean-field extension of the model to higher dimensions to estimate the friction tensor for a disc rotating and translating horizontally along a line. When the DNA strands are very stiff and short, the friction coefficient for the disc rolling approaches zero while the friction for the disc sliding remains large. Together, these results could have significant implications for the dynamics of DNA-coated colloids or other ligand-receptor systems, implying that DNA-induced friction between colloids can be stronger than hydrodynamic friction and should be incorporated into simulations, and that it depends nontrivially on the type of relative motion, possibly causing the particles to assemble into out-of-equilibrium metastable states governed by the pathways with the least friction.
An important goal of self-assembly is to achieve a preprogrammed structure with high fidelity. Here, we control the valence of DNA-functionalized emulsions to make linear and branched model polymers, or `colloidomers. The distribution of cluster size s is consistent with a polymerization process in which the droplets achieve their prescribed valence. Conformational dynamics reveals that the chains are freely-jointed, such that the end-to-end length scales with the number of bonds $N$ as $N^{ u}$, where $ uapprox3/4$, in agreement with the Flory theory in 2D. The chain diffusion coefficient $D$ approximately scales as $Dpropto N^{- u}$, as predicted by the Zimm model. Unlike molecular polymers, colloidomers can be repeatedly assembled and disassembled under temperature cycling, allowing for reconfigurable, responsive matter.
We describe and analyze some Monte Carlo methods for manifolds in Euclidean space defined by equality and inequality constraints. First, we give an MCMC sampler for probability distributions defined by un-normalized densities on such manifolds. The s ampler uses a specific orthogonal projection to the surface that requires only information about the tangent space to the manifold, obtainable from first derivatives of the constraint functions, hence avoiding the need for curvature information or second derivatives. Second, we use the sampler to develop a multi-stage algorithm to compute integrals over such manifolds. We provide single-run error estimates that avoid the need for multiple independent runs. Computational experiments on various test problems show that the algorithms and error estimates work in practice. The method is applied to compute the entropies of different sticky hard sphere systems. These predict the temperature or interaction energy at which loops of hard sticky spheres become preferable to chains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا