ترغب بنشر مسار تعليمي؟ اضغط هنا

We report an efficient technique to induce gate-tunable two-dimensional superlattices in graphene by the combined action of a back gate and a few-layer graphene patterned bottom gate complementary to existing methods. The patterned gates in our appro ach can be easily fabricated and implemented in van der Waals stacking procedures allowing flexible use of superlattices with arbitrary geometry. In transport measurements on a superlattice with lattice constant $a=40$ nm well pronounced satellite Dirac points and signatures of the Hofstadter butterfly including a non-monotonic quantum Hall response are observed. Furthermore, the experimental results are accurately reproduced in transport simulations and show good agreement with features in the calculated band structure. Overall, we present a comprehensive picture of graphene-based superlattices, featuring a broad range of miniband effects, both in experiment and in theoretical modeling. The presented technique is suitable for studying more advanced geometries which are not accessible by other methods.
One-dimensional (1D) graphene superlattices have been predicted to exhibit zero-energy modes a decade ago, but an experimental proof has remained missing. Motivated by a recent experiment that could possibly shed light on this, here we perform quantu m transport simulations for 1D graphene superlattices, considering electrostatically simulated potential profiles as realistic as possible. Combined with the analysis on the corresponding miniband structures, we find that the zero modes generated by the 1D superlattice potential can be further cloned to higher energies, which are also accessible by tuning the average density. Our multiterminal transverse magnetic focusing simulations further reveal the modulation-controllable ballistic miniband transport for 1D graphene superlattices. A simple idea for creating a perfectly symmetric periodic potential with strong modulation is proposed at the end of this work, generating well aligned zero modes up to 6 within a reasonable gate strength.
We study transport in twisted bilayer graphene and show that electrostatic barriers can act as valley splitters, where electrons from the $K$ ($K$) valley are transmitted only to e.g. the top (bottom) layer, leading to valley-layer locked currents. W e show that such a valley splitter is obtained when the barrier varies slowly on the moire scale and induces a Lifshitz transition across the junction, i.e. a change in the Fermi surface topology. Furthermore, we show that for a given valley the reflected and transmitted current are transversely deflected, as time-reversal symmetry is effectively broken in each valley separately, resulting in valley-selective transverse focusing at zero magnetic field.
The van-der-Waals stacking technique enables the fabrication of heterostructures, where two conducting layers are atomically close. In this case, the finite layer thickness matters for the interlayer electrostatic coupling. Here we investigate the el ectrostatic coupling of two graphene layers, twisted by 22 degrees such that the layers are decoupled by the huge momentum mismatch between the K and K points of the two layers. We observe a splitting of the zero-density lines of the two layers with increasing interlayer energy difference. This splitting is given by the ratio of single-layer quantum capacitance over interlayer capacitance C and is therefore suited to extract C. We explain the large observed value of C by considering the finite dielectric thickness d of each graphene layer and determine d=2.6 Angstrom. In a second experiment we map out the entire density range with a Fabry-Perot resonator. We can precisely measure the Fermi-wavelength in each layer, showing that the layers are decoupled. We find that the Fermi wavelength exceeds 600nm at the lowest densities and can differ by an order of magnitude between the upper and lower layer. These findings are reproduced using tight-binding calculations.
The specific rotational alignment of two-dimensional lattices results in a moire superlattice with a larger period than the original lattices and allows one to engineer the electronic band structure of such materials. So far, transport signatures of such superlattices have been reported for graphene/hBN and graphene/graphene systems. Here we report moire superlattices in fully hBN encapsulated graphene with both the top and the bottom hBN aligned to the graphene. In the graphene, two different moire superlattices form with the top and the bottom hBN, respectively. The overlay of the two superlattices can result in a third superlattice with a period larger than the maximum period (14 nm) in the graphene/hBN system, which we explain in a simple model. This new type of band structure engineering allows one to artificially create an even wider spectrum of electronic properties in two-dimensional materials.
We show that in gapped bilayer graphene, quasiparticle tunneling and the corresponding Berry phase can be controlled such that it exhibits features of single layer graphene such as Klein tunneling. The Berry phase is detected by a high-quality Fabry- P{e}rot interferometer based on bilayer graphene. By raising the Fermi energy of the charge carriers, we find that the Berry phase can be continuously tuned from $2pi$ down to $0.68pi$ in gapped bilayer graphene, in contrast to the constant Berry phase of $2pi$ in pristine bilayer graphene. Particularly, we observe a Berry phase of $pi$, the standard value for single layer graphene. As the Berry phase decreases, the corresponding transmission probability of charge carriers at normal incidence clearly demonstrates a transition from anti-Klein tunneling to nearly perfect Klein tunneling.
We put forward a concept to create highly collimated, non-dispersive electron beams in pseudo-relativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic pn junct ion, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using theoretical artificial graphene. To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Perot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.
44 - Ming-Hao Liu 2013
The quantum capacitance model is applied to obtain an exact solution for the space-resolved carrier density in a multigated doped graphene sheet at zero temperature, with quantum correction arising from the finite electron capacity of the graphene it self taken into account. The exact solution is demonstrated to be equivalent to the self-consistent Poisson-Dirac iteration method by showing an illustrative example, where multiple gates with irregular shapes and a nonuniform dopant concentration are considered. The solution therefore provides a fast and accurate way to compute spatially varying carrier density, on-site electric potential energy, as well as quantum capacitance for bulk graphene, allowing for any kind of gating geometry with any number of gates and any types of intrinsic doping.
45 - Ming-Hao Liu 2012
This article aims at providing a self-contained introduction to theoretical modeling of gate-induced carrier density in graphene sheets. For this, relevant theories are introduced, namely, classical capacitance model (CCM), self-consistent Poisson-Di rac method (PDM), and quantum capacitance model (QCM). The usage of Matlab pdetool is also briefly introduced, pointing out the least knowledge required for using this tool to solve the present electrostatic problem. Results based on the three approaches are compared, showing that the quantum correction, which is not considered by the CCM but by the other two, plays a role only when the metal gate is exceedingly close to the graphene sheet, and that the exactly solvable QCM works equally well as the self-consistent PDM. Practical examples corresponding to realistic experimental conditions for generating graphene pnp junctions and superlattices, as well as how a background potential linear in position can be achieved in graphene, are shown to illustrate the applicability of the introduced methods. Furthermore, by treating metal contacts in the same way, the last example shows that the PDM and the QCM are able to resolve the contact-induced doping and screening potential, well agreeing with the previous first-principles studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا