ﻻ يوجد ملخص باللغة العربية
We put forward a concept to create highly collimated, non-dispersive electron beams in pseudo-relativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic pn junction, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.
Designing high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Previous approaches, e.g. the seminal nanometer-sized quantum corrals, depend on careful positioning of adatoms at clean
The superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is considered. It is shown that the structure of the order parameter in the valley space substantially affects conditions of the pairing. Electron-hol
Electron interactions are usually probed indirectly, through their impact on transport coefficients. Here we describe a direct scheme that, in principle, gives access to the full angle dependence of carrier scattering in 2D Fermi gases. The latter is
Controlling directional emission of nanophotonic radiation sources is fundamental to tailor radiation-matter interaction and to conceive highly efficient nanophotonic devices for on-chip wireless communication and information processing. Nanoantennas
We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, aft