ترغب بنشر مسار تعليمي؟ اضغط هنا

Valley splitter and transverse valley focusing in twisted bilayer graphene

106   0   0.0 ( 0 )
 نشر من قبل Christophe De Beule
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study transport in twisted bilayer graphene and show that electrostatic barriers can act as valley splitters, where electrons from the $K$ ($K$) valley are transmitted only to e.g. the top (bottom) layer, leading to valley-layer locked currents. We show that such a valley splitter is obtained when the barrier varies slowly on the moire scale and induces a Lifshitz transition across the junction, i.e. a change in the Fermi surface topology. Furthermore, we show that for a given valley the reflected and transmitted current are transversely deflected, as time-reversal symmetry is effectively broken in each valley separately, resulting in valley-selective transverse focusing at zero magnetic field.



قيم البحث

اقرأ أيضاً

247 - Tao Hou , Yafei Ren , Yujie Quan 2020
We study the electronic transport properties at the intersection of three topological zero-lines as the elementary current partition node that arises in minimally twisted bilayer graphene. Unlike the partition laws of two intersecting zero-lines, we find that (i) the incoming current can be partitioned into both left-right adjacent topological channels and that (ii) the forward-propagating current is nonzero. By tuning the Fermi energy from the charge-neutrality point to a band edge, the currents partitioned into the three outgoing channels become nearly equal. Moreover, we find that current partition node can be designed as a perfect valley filter and energy splitter controlled by electric gating. By changing the relative electric field magnitude, the intersection of three topological zero-lines can transform smoothly into a single zero line, and the current partition can be controlled precisely. We explore the available methods for modulating this device systematically by changing the Fermi energy, the energy gap size, and the size of central gapless region. The current partition is also influenced by magnetic fields and the system size. Our results provide a microscopic depiction of the electronic transport properties around a unit cell of minimally twisted bilayer graphene and have far-reaching implications in the design of electron-beam splitters and interferometer devices.
Twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (h-BN) substrate can exhibit an anomalous Hall effect at 3/4 filling due to the spontaneous valley polarization in valley resolved moire bands with opposite Chern number [Science 367 , 900 (2020), Science 365, 605 (2019)]. It was observed that a small DC current is able to switch the valley polarization and reverse the sign of the Hall conductance [Science 367, 900 (2020), Science 365, 605 (2019)]. Here, we discuss the mechanism of the current switching of valley polarization near the transition temperature, where bulk dissipative transport dominates. We show that for a sample with rotational symmetry breaking, a DC current may generate an electron density difference between the two valleys (valley density difference). The current induced valley density difference in turn induces a first order transition in the valley polarization. We emphasize that the inter-valley scattering plays a central role since it is the channel for exchanging electrons between the two valleys. We further estimate the valley density difference in the TBG/h-BN system with a microscopic model, and find a significant enhancement of the effect in the magic angle regime.
Van der Waals heterostructures provide a rich platform for emergent physics due to their tunable hybridization of electronic orbital- and spin-degrees of freedom. Here, we show that a heterostructure formed by twisted bilayer graphene sandwiched betw een ferromagnetic insulators develops flat bands stemming from the interplay between twist, exchange proximity and spin-orbit coupling. We demonstrate that in this flat-band regime, the spin degree of freedom is hybridized, giving rise to an effective triangular superlattice with valley as a degenerate pseudospin degree of freedom. Incorporating electronic interactions at half-filling leads to a spontaneous valley-mixed state, i.e., a correlated state in the valley sector with geometric frustration of the valley spinor. We show that an electric interlayer bias generates an artificial valley-orbit coupling in the effective model, controlling both the valley anisotropy and the microscopic details of the correlated state, with both phenomena understood in terms of a valley-Heisenberg model with easy-plane anisotropic exchange. Our results put forward twisted graphene encapsulated between magnetic van der Waals heterostructures as platforms to explore purely valley-correlated states in graphene.
59 - Y. Cao , J. Y. Luo , V. Fatemi 2016
Twisted bilayer graphene (TwBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moir{e} physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TwBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moir{e} wavevector.
We study theoretically interaction of a bilayer graphene with a circularly polarized ultrafast optical pulse of a single oscillation at an oblique incidence. The normal component of the pulse breaks the inversion symmetry of the system and opens up a dynamical band-gap, due to which a valley-selective population of the conduction band becomes sensitive to the angle of incident of the pulse. We show that the magnitude of the valley polarization can be controlled by the angle of incidence, the amplitude, and the angle of in-plane polarization of the chiral optical pulse. Subsequently, a sequence of a circularly polarized pulse followed by a linearly polarized femtosecond-long pulse can be used to control the valley polarization created by the preceding pulse. Generally, the linearly polarized pulse depolarizes the system. The magnitude of such a depolarization depends on the amplitude, and the in-plane polarization angle of the linearly polarized pulse. Our protocol provides a favorable platform for applications in valleytronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا