ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform a digital pseudoquantum simulation of $mathbb{Z}_2$ gauge Higgs model on a $3times 3$ lattice. First we propose the quantum algorithm for the digital quantum simulation, based on Trotter decomposition, quantum adiabatic algorithm and its c ircuit realization. Then we classically demonstrate it in a GPU simulator, obtaining useful results, which indicate the topological properties of deconfined phase and clarify the phase diagram. Especially, our work suggests that the tricitical point, where the two critical lines of second-order transitions meet, lies on the critical line of the first-order transition rather than its end.
The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore th e emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Let $Q$ be a finite acyclic valued quiver. We give the high-dimensional cluster multiplication formulas in the quantum cluster algebra of $Q$ with arbitrary coefficients, by applying certain quotients of derived Hall subalgebras of $Q$.
In this work, we perform a systematical investigation about the possible hidden and doubly heavy molecular states with open and hidden strangeness from interactions of $D^{(*)}{bar{D}}^{(*)}_{s}$/$B^{(*)}{bar{B}}^{(*)}_{s}$, ${D}^{(*)}_{s}{bar{D}}^{( *)}_{s}$/${{B}}^{(*)}_{s}{bar{B}}^{(*)}_{s}$, ${D}^{(*)}D_{s}^{(*)}$/${B}^{(*)}B_{s}^{(*)}$, and $D_{s}^{(*)}D_{s}^{(*)}$/$B_{s}^{(*)}B_{s}^{(*)}$ in a quasipotential Bethe-Salpeter equation approach. The interactions of the systems considered are described within the one-boson-exchange model, which includes exchanges of light mesons and $J/psi/Upsilon$ meson. Possible molecular states are searched for as poles of scattering amplitudes of the interactions considered. The results suggest that recently observed $Z_{cs}(3985)$ can be assigned as a molecular state of $D^*bar{D}_s+Dbar{D}^*_s$, which is a partner of $Z_c(3900)$ state as a $Dbar{D}^*$ molecular state. The calculation also favors the existence of hidden heavy states $D_sbar{D}_s/B_sbar{B}_s$ with spin parity $J^P=0^+$, $D_sbar{D}^*_s/B_sbar{B}^*_s$ with $1^{+}$, and $D^*_sbar{D}^*_s/B^*_sbar{B}^*_s$ with $0^+$, $1^+$, and $2^+$. In the doubly heavy sector, the bound states can be found from the interactions $(D^*D_s+DD^*_s)/(B^*B_s+BB^*_s)$ with $1^+$, $D_sbar{D}_s^*/B_sbar{B}_s^*$ with $1^+$, $D^*D^*_s/B^*B^*_s$ with $1^+$ and $2^+$, and $D^*_sD^*_s/B^*_sB^*_s$ with $1^+$ and $2^+$. Some other interactions are also found attractive, but may be not strong enough to produce a bound state. The results in this work are helpful for understanding the $Z_{cs}(3985)$, and future experimental search for the new molecular states.
The beginning of 2020 has seen the emergence of coronavirus outbreak caused by a novel virus called SARS-CoV-2. The sudden explosion and uncontrolled worldwide spread of COVID-19 show the limitations of existing healthcare systems in timely handling public health emergencies. In such contexts, innovative technologies such as blockchain and Artificial Intelligence (AI) have emerged as promising solutions for fighting coronavirus epidemic. In particular, blockchain can combat pandemics by enabling early detection of outbreaks, ensuring the ordering of medical data, and ensuring reliable medical supply chain during the outbreak tracing. Moreover, AI provides intelligent solutions for identifying symptoms caused by coronavirus for treatments and supporting drug manufacturing. Therefore, we present an extensive survey on the use of blockchain and AI for combating COVID-19 epidemics. First, we introduce a new conceptual architecture which integrates blockchain and AI for fighting COVID-19. Then, we survey the latest research efforts on the use of blockchain and AI for fighting COVID-19 in various applications. The newly emerging projects and use cases enabled by these technologies to deal with coronavirus pandemic are also presented. A case study is also provided using federated AI for COVID-19 detection. Finally, we point out challenges and future directions that motivate more research efforts to deal with future coronavirus-like epidemics.
The Industrial Internet of Things (IIoT) offers promising opportunities to transform the operation of industrial systems and becomes a key enabler for future industries. Recently, artificial intelligence (AI) has been widely utilized for realizing in telligent IIoT applications where AI techniques require centralized data collection and processing. However, this is not always feasible in realistic scenarios due to the high scalability of modern IIoT networks and growing industrial data confidentiality. Federated Learning (FL), as an emerging collaborative AI approach, is particularly attractive for intelligent IIoT networks by coordinating multiple IIoT devices and machines to perform AI training at the network edge while helping protect user privacy. In this article, we provide a detailed overview and discussions of the emerging applications of FL in key IIoT services and applications. A case study is also provided to demonstrate the feasibility of FL in IIoT. Finally, we highlight a range of interesting open research topics that need to be addressed for the full realization of FL-IIoT in industries.
Text-to-Image generation in the general domain has long been an open problem, which requires both a powerful generative model and cross-modal understanding. We propose CogView, a 4-billion-parameter Transformer with VQ-VAE tokenizer to advance this p roblem. We also demonstrate the finetuning strategies for various downstream tasks, e.g. style learning, super-resolution, text-image ranking and fashion design, and methods to stabilize pretraining, e.g. eliminating NaN losses. CogView (zero-shot) achieves a new state-of-the-art FID on blurred MS COCO, outperforms previous GAN-based models and a recent similar work DALL-E.
Two dimensional (2D) ferromagnetic materials have attracted much attention in the fields of condensed matter physics and materials science, but their synthesis is still a challenge given their limitations on structural stability and susceptibility to oxidization. MAX phases nanolaminated ternary carbides or nitrides possess a unique crystal structure in which single-atom-thick A sublayers are interleaved by two dimensional MX slabs, providing nanostructured templates for designing 2D ferromagnetic materials if the non-magnetic A sublayers can be substituted replaced by magnetic elements. Here, we report three new ternary magnetic MAX phases (Ta2FeC, Ti2FeN and Nb2FeC) with A sublayers of single-atom-thick 2D iron through an isomorphous replacement reaction of MAX precursors (Ta2AlC, Ti2AlN and Nb2AlC) with a Lewis acid salts (FeCl2). All these MAX phases exhibit ferromagnetic (FM) behavior. The Curie temperature (Tc) of Ta2FeC and Nb2FeC MAX phase are 281 K and 291 K, respectively, i.e. close to room temperature. The saturation magnetization of these ternary magnetic MAX phases is almost two orders of magnitude higher than that of V2(Sn,Fe)C MAX phase whose A-site is partial substituted by Fe. Theoretical calculations on magnetic orderings of spin moments of Fe atoms in these nanolaminated magnetic MAX phases reveal that the magnetism can be mainly ascribed to intralayer exchange interaction of the 2D Fe atomic layers. Owning to the richness in composition of MAX phases, there is a large compositional space for constructing functional single-atom-thick 2D layers in materials using these nanolaminated templates.
Detecting multipartite quantum coherence usually requires quantum state reconstruction, which is quite inefficient for large-scale quantum systems. Along this line of research, several efficient procedures have been proposed to detect multipartite qu antum coherence without quantum state reconstruction, among which the spectrum-estimation-based method is suitable for various coherence measures. Here, we first generalize the spectrum-estimation-based method for the geometric measure of coherence. Then, we investigate the tightness of the estimated lower bound of various coherence measures, including the geometric measure of coherence, $l_1$-norm of coherence, the robustness of coherence, and some convex roof quantifiers of coherence multiqubit GHZ states and linear cluster states. Finally, we demonstrate the spectrum-estimation-based method as well as the other two efficient methods by using the same experimental data [Ding et al. Phys. Rev. Research 3, 023228 (2021)]. We observe that the spectrum-estimation-based method outperforms other methods in various coherence measures, which significantly enhances the accuracy of estimation.
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا