ﻻ يوجد ملخص باللغة العربية
Detecting multipartite quantum coherence usually requires quantum state reconstruction, which is quite inefficient for large-scale quantum systems. Along this line of research, several efficient procedures have been proposed to detect multipartite quantum coherence without quantum state reconstruction, among which the spectrum-estimation-based method is suitable for various coherence measures. Here, we first generalize the spectrum-estimation-based method for the geometric measure of coherence. Then, we investigate the tightness of the estimated lower bound of various coherence measures, including the geometric measure of coherence, $l_1$-norm of coherence, the robustness of coherence, and some convex roof quantifiers of coherence multiqubit GHZ states and linear cluster states. Finally, we demonstrate the spectrum-estimation-based method as well as the other two efficient methods by using the same experimental data [Ding et al. Phys. Rev. Research 3, 023228 (2021)]. We observe that the spectrum-estimation-based method outperforms other methods in various coherence measures, which significantly enhances the accuracy of estimation.
Quantification of coherence lies at the heart of quantum information processing and fundamental physics. Exact evaluation of coherence measures generally needs a full reconstruction of the density matrix, which becomes intractable for large-scale mul
We study the trade-off relations given by the l_1-norm coherence of general multipartite states. Explicit trade-off inequalities are derived with lower bounds given by the coherence of either bipartite or multipartite reduced density matrices. In par
In this brief report, we prove that robustness of coherence (ROC), in contrast to many popular quantitative measures of quantum coherence derived from the resource theoretic framework of coherence, may be sub-additive for a specific class of multipar
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent
Certain quantum states are well-known to be particularly fragile in the presence of decoherence, as illustrated by Schrodingers famous gedanken cat experiment. It has been better appreciated more recently that quantum states can be characterized in a