ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Learning for Internet of Things: A Comprehensive Survey

321   0   0.0 ( 0 )
 نشر من قبل Dinh Nguyen
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.

قيم البحث

اقرأ أيضاً

The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore th e emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era. Nowadays smart machines and smart factories use machine learning/deep learning based models for incurring intelligen ce. However, storing and communicating the data to the cloud and end device leads to issues in preserving privacy. In order to address this issue, federated learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models. Integrating FL in IIoT ensures that no local sensitive data is exchanged, as the distribution of learning models over the edge devices has become more common with FL. Therefore, only the encrypted notifications and parameters are communicated to the central server. In this paper, we provide a thorough overview on integrating FL with IIoT in terms of privacy, resource and data management. The survey starts by articulating IIoT characteristics and fundamentals of distributive and FL. The motivation behind integrating IIoT and FL for achieving data privacy preservation and on-device learning are summarized. Then we discuss the potential of using machine learning, deep learning and blockchain techniques for FL in secure IIoT. Further we analyze and summarize the ways to handle the heterogeneous and huge data. Comprehensive background on data and resource management are then presented, followed by applications of IIoT with FL in healthcare and automobile industry. Finally, we shed light on challenges, some possible solutions and potential directions for future research.
Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.
Federated learning can be a promising solution for enabling IoT cybersecurity (i.e., anomaly detection in the IoT environment) while preserving data privacy and mitigating the high communication/storage overhead (e.g., high-frequency data from time-s eries sensors) of centralized over-the-cloud approaches. In this paper, to further push forward this direction with a comprehensive study in both algorithm and system design, we build FedIoT platform that contains FedDetect algorithm for on-device anomaly data detection and a system design for realistic evaluation of federated learning on IoT devices. Furthermore, the proposed FedDetect learning framework improves the performance by utilizing a local adaptive optimizer (e.g., Adam) and a cross-round learning rate scheduler. In a network of realistic IoT devices (Raspberry PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance. Our results demonstrate the efficacy of federated learning in detecting a wider range of attack types occurred at multiple devices. The system efficiency analysis indicates that both end-to-end training time and memory cost are affordable and promising for resource-constrained IoT devices. The source code is publicly available at https://github.com/FedML-AI/FedIoT
The Industrial Internet of Things (IIoT) offers promising opportunities to transform the operation of industrial systems and becomes a key enabler for future industries. Recently, artificial intelligence (AI) has been widely utilized for realizing in telligent IIoT applications where AI techniques require centralized data collection and processing. However, this is not always feasible in realistic scenarios due to the high scalability of modern IIoT networks and growing industrial data confidentiality. Federated Learning (FL), as an emerging collaborative AI approach, is particularly attractive for intelligent IIoT networks by coordinating multiple IIoT devices and machines to perform AI training at the network edge while helping protect user privacy. In this article, we provide a detailed overview and discussions of the emerging applications of FL in key IIoT services and applications. A case study is also provided to demonstrate the feasibility of FL in IIoT. Finally, we highlight a range of interesting open research topics that need to be addressed for the full realization of FL-IIoT in industries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا