ترغب بنشر مسار تعليمي؟ اضغط هنا

By studying the individual star-formation histories of the bulges and discs of lenticular (S0) galaxies, it is possible to build up a sequence of events that leads to the cessation of star formation and the consequent transformation from the progenit or spiral. In order to separate the bulge and disc stellar populations, we spectroscopically decomposed long-slit spectra of Virgo Cluster S0s into bulge and disc components. Analysis of the decomposed spectra shows that the most recent star formation activity in these galaxies occurred within the bulge regions, having been fuelled by residual gas from the disc. These results point towards a scenario where the star formation in the discs of spiral galaxies are quenched, followed by a final episode of star formation in the central regions from the gas that has been funnelled inwards through the disc.
The individual star formation histories of bulges and discs of lenticular (S0) galaxies can provide information on the processes involved in the quenching of their star formation and subsequent transformation from spirals. In order to study this tran sformation in dense environments, we have decomposed long-slit spectroscopic observations of a sample of 21 S0s from the Virgo Cluster to produce one-dimensional spectra representing purely the bulge and disc light for each galaxy. Analysis of the Lick indices within these spectra reveals that the bulges contain consistently younger and more metal-rich stellar populations than their surrounding discs, implying that the final episode of star formation within S0s occurs in their central regions. Analysis of the $alpha$-element abundances in these components further presents a picture in which the final episode of star formation in the bulge is fueled using gas that has previously been chemically enriched in the disc, indicating the sequence of events in the transformation of these galaxies. Systems in which star formation in the disk was spread over a longer period contain bulges in which the final episode of star formation occurred more recently, as one might expect for an approximately coeval population in which the transformation from spiral to S0 occurred at different times. With data of this quality and the new analysis method deployed here, we can begin to describe this process in a quantitative manner for the first time.
In order to try and understand its origins, we present high-quality long-slit spectral observations of the counter-rotating stellar discs in the strange S0 galaxy NGC 4550. We kinematically decompose the spectra into two counter-rotating stellar comp onents (plus a gaseous component), in order to study both their kinematics and their populations. The derived kinematics largely confirm what was known previously about the stellar discs, but trace them to larger radii with smaller errors; the fitted gaseous component allows us to trace the hydrogen emission lines for the first time, which are found to follow the same rather strange kinematics previously seen in the [OIII] line. Analysis of the populations of the two separate stellar components shows that the secondary disc has a significantly younger mean age than the primary disc, consistent with later star formation from the associated gaseous material. In addition, the secondary disc is somewhat brighter, also consistent with such additional star formation. However, these measurements cannot be self-consistently modelled by a scenario in which extra stars have been added to initially-identical counter-rotating stellar discs, which rules out Evans & Colletts (1994) elegant separatrix-crossing model for the formation of such massive counter-rotating discs from a single galaxy, leaving some form of unusual gas accretion history as the most likely formation mechanism.
The direct detection of dark matter on Earth depends crucially on its density and its velocity distribution on a milliparsec scale. Conventional N-body simulations are unable to access this scale, making the development of other approaches necessary. In this paper, we apply the method developed in Fantin et al. 2008 to a cosmologically-based merger tree, transforming it into a useful instrument to reproduce and analyse the merger history of a Milky Way-like system. The aim of the model is to investigate the implications of any ultra-fine structure for the current and next generation of directional dark matter detectors. We find that the velocity distribution of a Milky Way-like Galaxy is almost smooth, due to the overlap of many streams of particles generated by multiple mergers. Only the merger of a 10^10 Msun analyse can generate significant features in the ultra-local velocity distribution, detectable at the resolution attainable by current experiments.
Various laboratory-based experiments are underway attempting to detect dark matter directly. The event rates and detailed signals expected in these experiments depend on the dark matter phase space distribution on sub-milliparsec scales. These scales are many orders of magnitude smaller than those that can be resolved by conventional N-body simulations, so one cannot hope to use such tools to investigate the effect of mergers in the history of the Milky Way on the detailed phase-space structure probed by the current experiments. In this paper we present an alternative approach to investigating the results of such mergers, by studying a simplified model for a merger of a sub-halo with a larger parent halo. With an appropriate choice of parent halo potential, the evolution of material from the sub-halo can be expressed analytically in action-angle variables, so it is possible to obtain its entire orbit history very rapidly without numerical integration. Furthermore by evolving backwards in time, we can obtain arbitrarily-high spatial resolution for the current velocity distribution at a fixed point. Although this model cannot provide a detailed quantitative comparison with the Milky Way, its properties are sufficiently generic that it offers qualitative insight into the expected structure arising from a merger at a resolution that cannot be approached with full numerical simulations. Preliminary results indicate that the velocity-space distribution of dark matter particles remains characterized by discrete and well-defined peaks over an extended period of time, both for single and multi-merging systems, in contrast to the simple smooth velocity distributions sometimes assumed in predicting laboratory experiment detection rates.
The grand-design spiral galaxy M51 has long been a crucial target for theories of spiral structure. Studies of this iconic spiral can address the question of whether strong spiral structure is transient (e.g. interaction-driven) or long-lasting. As a clue to the origin of the structure in M51, we investigate evidence for radial variation in the spiral pattern speed using the radial Tremaine-Weinberg (TWR) method. We implement the method on CO observations tracing the ISM-dominant molecular component. Results from the methods numerical implementation--combined with regularization, which smooths intrinsically noisy solutions--indicate two distinct patterns speeds inside 4 kpc at our derived major axis PA=170 deg., both ending at corotation and both significantly higher than the conventionally adopted global value. Inspection of the rotation curve suggests that the pattern speed interior to 2 kpc lacks an ILR, consistent with the leading structure seen in HST near-IR observations. We also find tentative evidence for a lower pattern speed between 4 and 5.3 kpc measured by extending the regularized zone. As with the original TW method, uncertainty in major axis position angle (PA) is the largest source of error in the calculation; in this study, where delta PA=+/-5 deg. a ~20% error is introduced to the parameters of the speeds at PA=170 deg. Accessory to this standard uncertainty, solutions with PA=175 deg. (also admitted by the data) exhibit only one pattern speed inside 4 kpc, and we consider this circumstance under the semblance of a radially varying PA.
At the intersection of galactic dynamics, evolution and global structure, issues such as the relation between bars and spirals and the persistence of spiral patterns can be addressed through the characterization of the angular speeds of the patterns and their possible radial variation. The Radial Tremaine-Weinberg (TWR) Method, a generalized version of the Tremaine-Weinberg method for observationally determining a single, constant pattern speed, allows the pattern speed to vary arbitrarily with radius. Here, we perform tests of the TWR method with regularization on several simulated galaxy data sets. The regularization is employed as a means of smoothing intrinsically noisy solutions, as well as for testing model solutions of different radial dependence (e.g. constant, linear or quadratic). We test these facilities in studies of individual simulations, and demonstrate successful measurement of both bar and spiral pattern speeds in a single disk, secondary bar pattern speeds, and spiral winding (in the first application of a TW calculation to a spiral simulation). We also explore the major sources of error in the calculation and find uncertainty in the major axis position angle most dominant. In all cases, the method is able to extract pattern speed solutions where discernible patterns exist to within 20% of the known values, suggesting that the TWR method should be a valuable tool in the area of galactic dynamics. For utility, we also discuss the caveats in, and compile a prescription for, applications to real galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا