ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of S0s in Clusters: evidence from the bulge and disc star formation histories

81   0   0.0 ( 0 )
 نشر من قبل Evelyn Johnston
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The individual star formation histories of bulges and discs of lenticular (S0) galaxies can provide information on the processes involved in the quenching of their star formation and subsequent transformation from spirals. In order to study this transformation in dense environments, we have decomposed long-slit spectroscopic observations of a sample of 21 S0s from the Virgo Cluster to produce one-dimensional spectra representing purely the bulge and disc light for each galaxy. Analysis of the Lick indices within these spectra reveals that the bulges contain consistently younger and more metal-rich stellar populations than their surrounding discs, implying that the final episode of star formation within S0s occurs in their central regions. Analysis of the $alpha$-element abundances in these components further presents a picture in which the final episode of star formation in the bulge is fueled using gas that has previously been chemically enriched in the disc, indicating the sequence of events in the transformation of these galaxies. Systems in which star formation in the disk was spread over a longer period contain bulges in which the final episode of star formation occurred more recently, as one might expect for an approximately coeval population in which the transformation from spiral to S0 occurred at different times. With data of this quality and the new analysis method deployed here, we can begin to describe this process in a quantitative manner for the first time.

قيم البحث

اقرأ أيضاً

Different processes have been proposed to explain the formation of S0s, including mergers, disc instabilities and quenched spirals. These processes are expected to dominate in different environments, and thus leave characteristic footprints in the ki nematics and stellar populations of the individual components within the galaxies. New techniques enable us to cleanly disentangle the kinematics and stellar populations of these components in IFU observations. In this paper, we use buddi to spectroscopically extract the light from the bulge, disc and lens components within a sample of 8 S0 galaxies in extreme environments observed with MUSE. While the spectra of bulges and discs in S0 galaxies have been separated before, this work is the first to isolate the spectra of lenses. Stellar populations analysis revealed that the bulges and lenses have generally similar or higher metallicities than the discs, and the $alpha$-enhancement of the bulges and discs are correlated, while those of the lenses are completely unconnected to either component. We conclude that the majority of the mass in these galaxies was built up early in the lifetime of the galaxy, with the bulges and discs forming from the same material through dissipational processes at high redshift. The lenses, on the other hand, formed over independent timescales at more random times within the lifetime of the galaxy, possibly from evolved bars. The younger stellar populations and asymmetric features seen in the field S0s may indicate that these galaxies have been affected more by minor mergers than the cluster galaxies.
88 - P. Di Matteo 2016
The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its m ain components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.
The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between $2$ and $8times10^9~{rm M_{odot}}$ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than $10$ Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than $100$ Myr are present in at least two nuclei: NGC 247 and NGC 7793, with some evidence for young star formation in NGC 300s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from $sim-1.5$ dex more than $10$ Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.
We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed such that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ~200 pc to ~1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxys shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.
In the MW bulge, metal-rich stars form a strong bar and are more peanut-shaped than metal-poor stars. It has been recently claimed that this behavior is driven by the initial in-plane radial velocity dispersion of these populations, rather than by th eir initial vertical random motions. This has led to the suggestion that a thick disc is not necessary to explain the characteristics of the MW bulge. We rediscuss this issue by analyzing two dissipationless N-body simulations of boxy/peanut (b/p)-shaped bulges formed from composite stellar discs, made of kinematically cold and hot stellar populations, and we conclude that initial vertical random motions are as important as in-plane random motions in determining the relative contribution of cold and hot disc populations with height above the plane, the metallicity and age trends. Previous statements emphasizing the dominant role of in-plane motions in determining these trends are not confirmed. However, differences exist in the morphology and strength of the resulting b/p-shaped bulges: a model where disc populations have initially only different in-plane random motions, but similar thickness, results into a b/p bulge where all populations have a similar peanut shape, independently on their initial kinematics, or metallicity. We discuss the reasons behind these differences, and also predict the signatures that these two extreme initial conditions would leave on the vertical age and metallicity gradients of disc stars, outside the bulge region. We conclude that a metal-poor, kinematically (radial and vertical) hot component, that is a thick disc, is necessary in the MW before bar formation, supporting the scenario traced in previous works. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا