ﻻ يوجد ملخص باللغة العربية
Various laboratory-based experiments are underway attempting to detect dark matter directly. The event rates and detailed signals expected in these experiments depend on the dark matter phase space distribution on sub-milliparsec scales. These scales are many orders of magnitude smaller than those that can be resolved by conventional N-body simulations, so one cannot hope to use such tools to investigate the effect of mergers in the history of the Milky Way on the detailed phase-space structure probed by the current experiments. In this paper we present an alternative approach to investigating the results of such mergers, by studying a simplified model for a merger of a sub-halo with a larger parent halo. With an appropriate choice of parent halo potential, the evolution of material from the sub-halo can be expressed analytically in action-angle variables, so it is possible to obtain its entire orbit history very rapidly without numerical integration. Furthermore by evolving backwards in time, we can obtain arbitrarily-high spatial resolution for the current velocity distribution at a fixed point. Although this model cannot provide a detailed quantitative comparison with the Milky Way, its properties are sufficiently generic that it offers qualitative insight into the expected structure arising from a merger at a resolution that cannot be approached with full numerical simulations. Preliminary results indicate that the velocity-space distribution of dark matter particles remains characterized by discrete and well-defined peaks over an extended period of time, both for single and multi-merging systems, in contrast to the simple smooth velocity distributions sometimes assumed in predicting laboratory experiment detection rates.
The direct detection of dark matter on Earth depends crucially on its density and its velocity distribution on a milliparsec scale. Conventional N-body simulations are unable to access this scale, making the development of other approaches necessary.
Dissipative dark matter self-interactions can affect halo evolution and change its structure. We perform a series of controlled N-body simulations to study impacts of the dissipative interactions on halo properties. The interplay between gravitationa
I discuss the dynamical interaction of galactic disks with the surrounding dark matter halos. In particular it is demonstrated that if the self-gravitating shearing sheet, a model of a patch of a galactic disk, is embedded in a live dark halo, this h
We investigate a hypothesis regarding the origin of the scalelength in halos formed in cosmological N-body simulations. This hypothesis can be viewed as an extension of an earlier idea put forth by Merritt and Aguilar. Our findings suggest that a phe
We demonstrate that self-interacting dark matter models with interactions mediated by light particles can have significant deviations in the matter power-spectrum and detailed structure of galactic halos when compared to a standard cold dark matter s