ترغب بنشر مسار تعليمي؟ اضغط هنا

K-band galaxy number counts (GNCs) exhibit a slope change at K~17.5 mag not present in optical bands. To unveil the nature of this feature, we have derived the contribution of different galaxy types to the total K-band GNCs at 0.3<z<1.5 by redshift b ins and compared the results with expectations from several galaxy evolutionary models. We show that the slope change is caused by a sudden swap of the galaxy population that numerically dominates the total GNCs (from quiescent E-S0s at K<17.5 mag to blue star-forming discs at fainter magnitudes), and that it is associated with a flattening of the contribution of the E-S0s at 0.6<z<1 to the total GNCs. We confirm previous studies showing that models in which the bulk of massive E-S0s have evolved passively since z>2 cannot predict the slope change, whereas those imposing a relatively late assembly on them (z<1.5) can reproduce it. The K-band GNCs by redshift bins and morphological types point to a progressively definitive build-up of ~50% of this galaxy population at 0.8<z<1.5, which can be explained only through the major mergers reported by observations. We conclude that the slope change in total K-band GNCs is a vestige of the definitive assembly of a substantial fraction of present-day massive E-S0s at 0.8<z<1.5.
We present a new cataloge of EROs from the Groth strip and study the relation between their morphology and mass. We find 102 EROs (F814W-K=>4, K<=21.0), over a survey area of 155 arcmin^2. The photometric data include U,B,F606W,F814W,J,K bands. Morph ologies are based on a by eye classification and we distinguish between 3 basic classes: compact objects, targets with a disc and/or a bulge component and irregular or merger candidates. The majority of our targets has either a very compact morphology (33+-6%), or show more or less distinct disc components (41+-6%). 14+-4% are merger or irregulars and 7 objects could not be classified. We also study the dependence of structural parameters on morphological appearance. EROs that are either compact or show a distinct bulge component have smaller median effective radii (1.22+-0.14 kpc and 3.31+-0.53 kpc) than disc dominated (5.50+-0.51 kpc) or possible irregular galaxies or merger candidates (4.92+-0.14 kpc). The Sersic index changes from 2.30+-0.34 and 3.24+-0.55, to 1.03+-0.24 and 1.54+-0.40 respectively. Most the EROs in our sample have redshifts between z=1 and z=2; however, compact EROs in our sample are found at redshifts as low as z=0.4 and as high as z=2.8; the latter qualify as well as DRGs. Disc-like EROs are also found up to z=2.8; however those with a bulge-disc structure are only seen at z<1.5. For each of these EROs we determined the stellar mass and mean population age by fitting synthetic Bruzual (2007) spectra to the SED. Mass estimates were obtained by assuming an exponentially declining star formation rate. Total stellar masses are in the range 9.1<log(M/M_sun)<11.6. We cannot detect significant differences between the stellar mass distribution of the morphological classes. EROs with masses of log(M/M_sun)>11.0 dominantly show compact morphologies, but also include a significant number of sources with a disc morphology.
Hierarchical models predict that massive early-type galaxies (mETGs) derive from the most massive and violent merging sequences occurred in the Universe. However, the role of wet, mixed, and dry major mergers in the assembly of mETGs is questioned by some recent observations. We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The model proves that it is feasible to reproduce the observed number density evolution of mETGs since z~1, just accounting for the coordinated effects of wet/mixed/dry major mergers. It can also reconcile the different assembly redshifts derived by hierarchical models and by mass downsizing data for mETGs, just considering that a mETG observed at a certain redshift is not necessarily in place since then. The model predicts that wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also played an essential role in it. The bulk of this assembly took place at 0.7<z<1, being nearly frozen at z<~0.7 due to the negligible number of major mergers occurred per existing mETG since then. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.
Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massiv e galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا