ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconciling a significant hierarchical assembly of massive early-type galaxies at z<~1 with mass downsizing

221   0   0.0 ( 0 )
 نشر من قبل M.Carmen Eliche-Moral
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massive galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.



قيم البحث

اقرأ أيضاً

Several studies have tried to ascertain whether or not the increase in abundance of the early-type galaxies (E-S0as) with time is mainly due to major mergers, reaching opposite conclusions. We have tested it directly through semi-analytical modelling , by studying how the massive early-type galaxies with log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the hypothesis that each major merger gives place to an early-type galaxy. The study was carried out just considering the major mergers strictly reported by observations at each redshift, and assuming that gas-rich major mergers experience transitory phases of dust-reddened, star-forming galaxies (DSFs). The model is able to reproduce the observed evolution of the galaxy LFs at z<~1, simultaneously for different rest-frame bands (B, I, and K) and for different selection criteria on color and morphology. It also provides a framework in which apparently-contradictory results on the recent evolution of the luminosity function (LF) of massive, red galaxies can be reconciled, just considering that observational samples of red galaxies can be significantly contaminated by DSFs. The model proves that it is feasible to build up ~50-60% of the present-day mETG population at z<~1 and to reproduce the observational excess by a factor of ~4-5 of late-type galaxies at 0.8<z<1 through the coordinated action of wet, mixed, and dry major mergers, fulfilling global trends that are in general agreement with mass-downsizing. The bulk of this assembly takes place during ~1 Gyr elapsed at 0.8<z<1. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive-end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.(Abridged)
152 - P. Saracco 2010
[Abridged]We present a study based on a sample of 62 early-type galaxies (ETGs) at 0.9<z_spec<2 aimed at constraining their past star formation and mass assembly histories. The sample is composed of normal ETGs having effective radii comparable to th e mean radius of local ones and of compact ETGs having effective radii from two to six times smaller. We do not find evidence of a dependence of the compactness of ETGs on their stellar mass. We find that the stellar mass of normal ETGs formed at z_form<3 while the stellar content of compact ETGs formed at 2<z_form<10 with a large fraction of them characterized by z_form>5. Earlier stars formed at z_form>5 are assembled in compact and more massive (M_*>10^11 M_sun) ETGs while stars later formed (z_form<3) or resulting from subsequent episodes of star formation are assembled both in compact and normal ETGs. Thus, the older the stellar population the higher the mass of the hosting galaxy but not vice versa. This suggests that the epoch of formation may play a role in the formation of massive ETGs rather than the mass itself. The possible general scheme in which normal <z>~1.5 ETGs are descendants of high-z compact spheroids enlarged through subsequent dry mergers is not compatible with the current models which predict a number of dry mergers two orders of magnitude lower than the one needed. Moreover, we do not find evidence supporting a dependence of the compactness of galaxies on their redshift of assembly. Finally, we propose a simple scheme of formation and assembly of the stellar mass of ETGs based on dissipative gas-rich merger which can qualitatively account for the co-existence of normal and compact ETGs observed at <z>~1.5 in spite of the same stellar mass, the lack of normal ETGs with high z_form and the absence of correlation between compactness, stellar mass and formation redshift.
The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic sized building blocks called haloes w hich are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 Gyrs after the Big Bang, having grown to more than 90% of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22% of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.
204 - Y. Matsuoka , K. Kawara 2010
We present an analysis of ~60 000 massive (stellar mass M_star > 10^{11} M_sun) galaxies out to z = 1 drawn from 55.2 deg2 of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) and the Sloan Digital Sky Survey (SDSS) II S upernova Survey. This is by far the largest survey of massive galaxies with robust mass estimates, based on infrared (K-band) photometry, reaching to the Universe at about half its present age. We find that the most massive (M_star > 10^{11.5} M_sun) galaxies have experienced rapid growth in number since z = 1, while the number densities of the less massive systems show rather mild evolution. Such a hierarchical trend of evolution is consistent with the predictions of the current semi-analytic galaxy formation model based on Lambda CDM theory. While the majority of massive galaxies are red-sequence populations, we find that a considerable fraction of galaxies are blue star-forming galaxies. The blue fraction is smaller in more massive systems and decreases toward the local Universe, leaving the red, most massive galaxies at low redshifts, which would support the idea of active bottom-up formation of these populations during 0 < z < 1.
148 - V. Perret , B. Epinat , P. Amram 2012
MASSIV (Mass Assembly Survey with SINFONI in VVDS) is a sample of 84 distant star-forming galaxies observed with the SINFONI Integral Field Unit (IFU) on the VLT. These galaxies are selected inside a redshift range of 0.8 < z < 1.9, i.e. where they a re between 3 and 5 billion years old. The sample aims to probe the dynamical and chemical abundances properties of representative galaxies of this cosmological era. On the one hand, close environment study shows that about a third of the sample is involved in major mergers. On the other hand, kinematical analysis revealed that 42% of the sample is rotating disks, in accordance with higher redshift samples. The remaining 58% show complex kinematics, suggesting a dynamical support based on dispersion, and about half of these galaxies is involved in major mergers. Spheroids, unrelaxed merger remnants, or extremely turbulent disks might be an explanation for such a behavior. Furthermore, the spatially resolved metallicity analysis reveals positive gradients, adding a piece to the puzzle of galaxies evolution scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا