ترغب بنشر مسار تعليمي؟ اضغط هنا

The trace of a substantial assembly of massive E-S0 galaxies at 0.8<z<1.5 in galaxy number counts

41   0   0.0 ( 0 )
 نشر من قبل M.Carmen Eliche-Moral
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

K-band galaxy number counts (GNCs) exhibit a slope change at K~17.5 mag not present in optical bands. To unveil the nature of this feature, we have derived the contribution of different galaxy types to the total K-band GNCs at 0.3<z<1.5 by redshift bins and compared the results with expectations from several galaxy evolutionary models. We show that the slope change is caused by a sudden swap of the galaxy population that numerically dominates the total GNCs (from quiescent E-S0s at K<17.5 mag to blue star-forming discs at fainter magnitudes), and that it is associated with a flattening of the contribution of the E-S0s at 0.6<z<1 to the total GNCs. We confirm previous studies showing that models in which the bulk of massive E-S0s have evolved passively since z>2 cannot predict the slope change, whereas those imposing a relatively late assembly on them (z<1.5) can reproduce it. The K-band GNCs by redshift bins and morphological types point to a progressively definitive build-up of ~50% of this galaxy population at 0.8<z<1.5, which can be explained only through the major mergers reported by observations. We conclude that the slope change in total K-band GNCs is a vestige of the definitive assembly of a substantial fraction of present-day massive E-S0s at 0.8<z<1.5.

قيم البحث

اقرأ أيضاً

We report the likely identification of a substantial population of massive M~10^11M_Sun galaxies at z~4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey. The obser ved spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000AA breaks, relatively old stellar populations, large stellar masses and low SFRs, with a median specific SFR of 2.9+/-1.8 x 10^-11/yr. Ultradeep Herschel/PACS 100micron, 160micron and Spitzer/MIPS 24micron data reveal no dust-obscured SFR activity for 15/19 (79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the SED fit, indicating independently that the average specific SFR is at least 10x smaller than of typical star-forming galaxies at z~4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8+/-0.7 x 10^-5Mpc^-3 to a limit of log10M/M_Sun>10.6, which is 10x and 80x lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (~35%) of z~4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8Gyr and stellar mass of 0.8x10^11M_Sun, the galaxies likely started forming stars before z =5, with SFRs well in excess of 100M_Sun/yr, far exceeding that of similarly abundant UV-bright galaxies at z>4. This suggests that most of the star-formation in the progenitors of quiescent z~4 galaxies was obscured by dust.
Massive Ultracompact Galaxies (MUGs) are common at z=2-3, but very rare in the nearby Universe. Simulations predict that the few surviving MUGs should reside in galaxy clusters, whose large relative velocities prevent them from merging, thus maintain ing their original properties (namely stellar populations, masses, sizes and dynamical state). We take advantage of the high-completeness, large-area spectroscopic GAMA survey, complementing it with deeper imaging from the KiDS and VIKING surveys. We find a set of 22 bona-fide MUGs, defined as having high stellar mass (>8x10^10 M_Sun) and compact size (R_e<2 Kpc) at 0.02 < z < 0.3. An additional set of 7 lower-mass objects (6x10^10 < M_star/M_Sun < 8x10^10) are also potential candidates according to typical mass uncertainties. The comoving number density of MUGs at low redshift (z < 0.3) is constrained at $(1.0pm 0.4)x 10^-6 Mpc^-3, consistent with galaxy evolution models. However, we find a mixed distribution of old and young galaxies, with a quarter of the sample representing (old) relics. MUGs have a predominantly early/swollen disk morphology (Sersic index 1<n<2.5) with high stellar surface densities (<Sigma_e> ~ 10^10 M_Sun Kpc^-2). Interestingly, a large fraction feature close companions -- at least in projection -- suggesting that many (but not all) reside in the central regions of groups. Halo masses show these galaxies inhabit average-mass groups. As MUGs are found to be almost equally distributed among environments of different masses, their relative fraction is higher in more massive overdensities, matching the expectations that some of these galaxies fell in these regions at early times. However, there must be another channel leading some of these galaxies to an abnormally low merger history because our sample shows a number of objects that do not inhabit particularly dense environments. (abridged)
[abridged] The mass-size relation of early-type galaxies (ETGs) has been largely studied in the last years to probe the mass assembly of the most massive objects in the Universe. In this paper, we focus on the mass-size relation of quiescent massive ETGs (Mstar/Msol > 3*10^10) living in massive clusters (M200 ~ 10^14 Mstar) at 0.8< z <1.5, as compared to those living in the field at the same epoch. Our sample contains ~ 400 ETGs in clusters and the same number in the field. Therefore, our sample is approximately an order of magnitude larger than previous studies in the same redshift range for galaxy clusters. We find that ETGs living in clusters are between ~30-50% larger than galaxies with the same stellar mass residing in the field. We parametrize the size using the mass-normalized size, gamma=Re/Mstar^0.57. The gamma distributions in both environments peak at the same position but the distributions in clusters are more skewed towards larger sizes. Since this size difference is not observed in the local Universe, the size evolution at fixed stellar mass from z~1.5 of cluster galaxies is less steep ((1+z)-0.53pm0.04) than the evolution of field galaxies ((1+z)-0.92pm0.04). The size difference seems to be essentially driven by the galaxies residing in the clusters cores (R<0.5*R200). If part of the size evolution is due to mergers, the difference we see between cluster and field galaxies could be due to higher merger rates in clusters at higher redshift, probably during the formation phase of the clusters when velocity dispersions are lower. We cannot exclude however that the difference is driven by newly quenched galaxies which are quenched more efficiently in clusters. The implications of these results for the hierarchical growth of ETGs will be discussed in a companion paper.
The rest-frame UV-optical (i.e., NUV-B) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV-B color gradients in ~1400 larg e ($rm r_e>0.18^{primeprime}$), nearly face-on (b/a>0.5) main-sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV-optical color gradients in the SFGs at z~1 and discuss their link with the buildup of stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-SED fitting, the color gradients in the low-mass ($M_{ast} <10^{10}M_{odot}$) SFGs generally become quite flat, while most of the high-mass ($M_{ast} > 10^{10.5}M_{odot}$) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.
We study the stellar mass assembly of the Spiderweb Galaxy (MRC 1138-262), a massive z = 2.2 radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties ar e determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by z = 0, increasing its stellar mass by up to a factor of ~ 2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا