ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparative study of the effect of Fe and Ni doping on the bismuth based perovskite La0.6Bi0.4MnO3.1, a projected spintronics magnetic semiconductor has been carried out. The doped systems show an expressive change in magnetic ordering temperature. However, the shifts in ferromagnetic transition (TC) of these doped phases are in opposite direction with respect to the parent phase TC of 115 K. The Ni-doped phase shows an increase in TC ~200 K, whereas the Fe-doped phase exhibits a downward shift to TC~95 K. Moreover, the Fe-doped is hard-type whereas the Ni-doped compound is soft-type ferromagnet. It is observed that the materials are semiconducting in the ferromagnetic phase with activation energies of 77 & 82 meV for Fe & Ni-doped phases respectively. In the presence of external magnetic field of 7 Tesla, they exhibit minor changes in the resistivity behaviours and the maximum isothermal magnetoresistance is around -20 % at 125 K for the Ni-phase. The results are explained on the basis of electronic phase separation and competing ferromagnetic and antiferromagnetic interactions between the various mixed valence cations.
The effect of oxygen content on the magnetic and transport properties of the ferromagnetic Eu0.9Ca0.1BaCo2O5.5+{delta} has been carried out. Unlike the increase in TC with calcium content, paradoxally the TC value decreases with the increase in oxyge n (Co4+) content as observed in the undoped phase. This result unveils the hidden generic magnetic feature of the LnBaCo2O5.5 system in the calcium doped phase. This behaviour supports strongly the appearance of Co3+ disproportion action into Co4+ and Co2+ and the magnetic phase separation scenario of ferromagnetic domains embedded in an antiferromagnetic matrix. All the samples covering a wide range of oxygen content, exhibit a p-type conductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا