ترغب بنشر مسار تعليمي؟ اضغط هنا

Incoherent Effect of Fe and Ni Substitutions in the Ferromagnetic-Insulator La0.6Bi0.4MnO3+d

43   0   0.0 ( 0 )
 نشر من قبل Asish K Kundu Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A comparative study of the effect of Fe and Ni doping on the bismuth based perovskite La0.6Bi0.4MnO3.1, a projected spintronics magnetic semiconductor has been carried out. The doped systems show an expressive change in magnetic ordering temperature. However, the shifts in ferromagnetic transition (TC) of these doped phases are in opposite direction with respect to the parent phase TC of 115 K. The Ni-doped phase shows an increase in TC ~200 K, whereas the Fe-doped phase exhibits a downward shift to TC~95 K. Moreover, the Fe-doped is hard-type whereas the Ni-doped compound is soft-type ferromagnet. It is observed that the materials are semiconducting in the ferromagnetic phase with activation energies of 77 & 82 meV for Fe & Ni-doped phases respectively. In the presence of external magnetic field of 7 Tesla, they exhibit minor changes in the resistivity behaviours and the maximum isothermal magnetoresistance is around -20 % at 125 K for the Ni-phase. The results are explained on the basis of electronic phase separation and competing ferromagnetic and antiferromagnetic interactions between the various mixed valence cations.

قيم البحث

اقرأ أيضاً

Ni$_{80}$Fe$_{20}$ (Py) and Py-Cu exhibit intriguing ultrafast demagnetization behavior, where the Ni magnetic moment shows a delayed response relative to the Fe [S. Mathias et al., PNAS {bf 109}, 4792 (2012)]. To unravel the mechanism responsible fo r this behavior, we have studied Py-Cu alloys for a wide range of Cu concentrations using X-ray magnetic circular dichroism (XMCD). The magnetic moments of Fe and Ni are found to respond very differently to Cu alloying: Fe becomes a strong ferromagnet in Py, with the magnetic moment largely unaffected by Cu alloying. In contrast, the Ni magnetic moment decreases continuously with increasing Cu concentration. Our results are corroborated by ab-initio calculations of the electronic structure, which we discuss in the framework of virtual bound states (VBSs). For high Cu concentrations, Ni exhibits VBSs below the Fermi level, which are likely responsible for an increased orbital/spin magnetic ratio at high Cu concentrations. Fe exhibits VBSs in the minority band, approximately 1 eV above the Fermi level in pure Py, that move closer to the Fermi level upon Cu alloying. A strong interaction between the VBSs and excited electrons above the Fermi level enhances the formation of localized magnons at Fe sites, which explains the different behavior between Fe and Ni during ultrafast demagnetization.
The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refriger ation by using recently discovered giant MCE materials. In this letter, we report on an inverse situation in Ni-Mn-Sn alloys, whereby applying a magnetic field adiabatically, rather than removing it, causes the sample to cool. This has been known to occur in some intermetallic compounds, for which a moderate entropy increase can be induced when a field is applied, thus giving rise to an inverse magnetocaloric effect. However, the entropy change found for some ferromagnetic Ni-Mn-Sn alloys is just as large as that reported for giant MCE materials, but with opposite sign. The giant inverse MCE has its origin in a martensitic phase transformation that modifies the magnetic exchange interactions due to the change in the lattice parameters.
150 - W. Cao , J. Liu , A. Zangiabadi 2019
We present measurements of interfacial Gilbert damping due to the spin pumping effect in Ni$_{81}$Fe$_{19}$/W heterostructures. Measurements were compared for heterostructures in which the crystallographic phase of W, either $alpha$(bcc)-W or $beta$( A15)-W, was enriched through deposition conditions and characterized using X-ray diffraction (XRD) and high-resolution cross-sectional transmission electron microscopy (HR-XTEM). Single phase Ni$_{81}$Fe$_{19}$/$alpha$-W heterostructures could be realized, but heterostructures with $beta$-W were realized as mixed $alpha$-$beta$ phase. The spin mixing conductances (SMC) for W at interfaces with Ni$_{81}$Fe$_{19}$ were found to be significantly lower than those for similarly heavy metals such as Pd and Pt, but comparable to those for Ta, and independent of enrichment in the $beta$ phase.
We have studied the effect of Fe addition on the structural and magnetic transitions in the magnetic shape memory alloy Ni-Mn-Ga by substituting systematically each atomic species by Fe. Calorimetric and AC susceptibility measurements have been carri ed out in order to study the magnetic and structural transformation properties. We find that the addition of Fe modifies the structural and magnetic transformation temperatures. Magnetic transition temperatures are displaced to higher values when Fe is substituted into Ni-Mn-Ga, while martensitic and premartensitic transformation temperatures shift to lower values. Moreover, it has been found that the electron per atom concentration essentially governs the phase stability in the quaternary system. However, the observed scaling of transition temperatures with $e/a$ differs from that reported in the related ternary system Ni-Mn-Ga.
213 - K. Tanikawa , S. Oki , S. Yamada 2013
Using low-temperature molecular beam epitaxy, we study substitutions of Fe atoms for Co ones in Co_3-xFe_xSi Heusler-compound films grown on Si and Ge. Even for the low-temperature grown Heusler-compound films, the Co-Fe atomic substitution at A and C sites can be confirmed by the conversion electron Mossbauer spectroscopy measurements. As a result, the magnetic moment and room-temperature spin polarization estimated by nonlocal spin-valve measurements are systematically changed with the Co-Fe substitutions. This study experimentally verified that the Co-Fe substitution in Co_3-xFe_xSi Heusler compounds can directly affect the room-temperature spin polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا