ترغب بنشر مسار تعليمي؟ اضغط هنا

Quenched galaxies at z>2 are nearly all very compact relative to z~0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present restframe UV spectra of Lyman-break galaxies (LBGs) at z~ 3 selected to be candidate progenitors of quenched galaxies at z~2 based on their compact restframe optical sizes and high surface density of star-formation. We compare their UV properties to those of more extended LBGs of similar mass and star formation rate (non-candidates). We find that candidate progenitors have faster ISM gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyman-alpha and interstellar absorption lines in that their Lyman-alpha emission remains strong despite high interstellar absorption, possibly indicating that the neutral HI fraction is patchy such that Lyman-alpha photons can escape. We detect stronger CIV P-Cygni features (emission and absorption) and HeII emission in candidates, indicative of larger populations of metal rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyman-alpha properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z~2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally-sized LBGs at these early epochs.
We use GOODS and CANDELS images to identify progenitors of massive (log M > 10 Msun) compact early-type galaxies (ETGs) at z~1.6. Since merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known s tar-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z~3 based on their mass, SFR and central stellar density and find that these account for a large fraction of, and possibly all, compact ETGs at z~1.6. We find that the average far-UV SED of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration, and consistent with more evolved (aging) star-formation. This is in line with other evidence that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended halos surrounding the compact core, both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas-rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the HST images, with their stellar mass assembling in-situ, and that they have not experienced any major merging until the epoch of observations at z~1.6.
We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W ba nd. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5$sigma$ limiting depth (within an aperture of radius 0.17 arcsec) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U-band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 $mu$m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zeropoint offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10^{10}M_odot at a 50% completeness level to z$sim$3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z$sim$2--4 via the Balmer break. It is also used to study the color--magnitude diagram of galaxies at 0<z<4.
116 - Yicheng Guo 2011
A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively-evolving galaxies (PEGs) at 2.3<z<3.5 by using rest-frame UV--optical (V-J vs. J-L) colors. The criteria a re thoroughly tested with theoretical stellar population synthesis models and real galaxies with spectroscopic redshifts to evaluate their efficiency and contamination. We apply the well-tested VJL criteria to the HST/WFC3 Early Release Science field and study the physical properties of selected galaxies. The redshift distribution of selected SFGs peaks at z~2.7, slightly lower than that of Lyman Break Galaxies at z~3. Comparing the observed mid-infrared fluxes of selected galaxies with the prediction of pure stellar emission, we find that our VJL method is effective at selecting massive dusty SFGs that are missed by the Lyman Break Technique. About half of the star formation in massive (M_{star}>10^{10}M_{Sun}) galaxies at 2.3<z<3.5 is contributed by dusty (extinction E(B-V)>0.4) SFGs, which however, only account for ~20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample, and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z~2.5. We find 6 PEG candidates at z>3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z~3, implying that this type of galaxies began to form their stars at z>5. We measure the integrated stellar mass density of PEGs at z~2.5 and set constraints on it at z>3. We find that the integrated stellar mass density grows by at least about factor of 10 in 1 Gyr at 3<z<5 and by another factor of 10 in next 3.5 Gyr (1<z<3).
108 - Mauro Giavalisco 2011
We report the discovery of large amounts of cold (T ~ 10^4 K), chemically young gas in an overdensity of galaxies at redshift z ~ 1.6 in the Great Observatories Origins Deep Survey southern field (GOODS-S). The gas is identified thanks to the ultra-s trong Mg II absorption features it imprints in the rest-frame UV spectra of galaxies in the background of the overdensity. There is no evidence that the optically-thick gas is part of any massive galaxy (i.e. M_star > 4x10^9 M_sun), but rather is associated with the overdensity; less massive and fainter galaxies (25.5 < z_850 < 27.5 mag) have too large an impact parameter to be causing ultra-strong absorption systems, based on our knowledge of such systems. The lack of corresponding Fe II absorption features, not detected even in co-added spectra, suggests that the gas is chemically more pristine than the ISM and outflows of star-forming galaxies at similar redshift, including those in the overdensity itself, and comparable to the most metal-poor stars in the Milky Way halo. A crude estimate of the projected covering factor of the high-column density gas (N_H >~ 10^20 cm-2) based on the observed fraction of galaxies with ultra-strong absorbers is C_F ~ 0.04. A broad, continuum absorption profile extending to the red of the interstellar Mg II absorption line by <~ 2000 km/s is possibly detected in two independent co-added spectra of galaxies of the overdensity, consistent with a large-scale infall motion of the gas onto the overdensity and its galaxies. Overall, these findings provides the first tentative evidence of accretion of cold, chemically young gas onto galaxies at high redshift, possibly feeding their star formation activity. The fact that the galaxies are members of a large structure, as opposed to field galaxies, might play a significant role in our ability to detect the accreting gas.
105 - Yicheng Guo 2011
We report the detection of color gradients in six massive (stellar mass > 10^{10} M_{sun}) and passively evolving (specific SFR < 10^{-11}/yr) galaxies at redshift 1.3<z<2.5 identified in the HUDF using HST ACS and WFC3/IR images. After matching diff erent PSFs, we obtain color maps and multi-band optical/near-IR photometry (BVizYJH) in concentric annuli, from the smallest resolved radial (~1.7 kpc) up to several times the H-band effective radius. We find that the inner regions of these galaxies have redder rest-frame UV--optical colors than the outer parts. The slopes of the color gradients mildly depend on the overall dust obscuration and rest-frame (U-V) color, with more obscured or redder galaxies having steeper color gradients. The z~2 color gradients are also steeper than those of local early-types. The gradient of a single parameter (age, extinction or metallicity) cannot fully explain the observed color gradients. Fitting spatially resolved HST seven-band photometry to stellar population synthesis models, we find that, regardless of assumptions for metallicity gradient, the redder inner regions of the galaxies have slightly higher dust obscuration than the bluer outer regions, although the magnitude depends on the assumed extinction law. The derived age gradient depends on the assumptions for metallicity gradient. We discuss the implications of a number of assumptions for metallicity gradient on the formation and evolution of these galaxies. We find that the evolution of the mass--size relationship from z~2 to z~0 cannot be driven by in--situ extended star formation, implying that accretion or merger is mostly responsible for the evolution. The lack of a correlation between color gradient and stellar mass argues against the metallicity gradient predicted by the monolithic collapse, which would require significant major mergers to evolve into the one observed at z~0. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا